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Abstract
Ensuring reliable recommendations is essential for a company’s success and user trust. Indeed has traditionally used point estimation to
maintain consistent model predictions during model refinement and retraining. However, despite extensive research on robustness, there
has been less focus on reliability and population monitoring. This study introduces the Cumulative Probability Stability Index (CPSI),
which is derived from the Probability Stability Index (PSI), to monitor distribution stability. CPSI assesses the stability of a model’s
population and allows for targeted adjustments. Our implementation of CPSI proved effective in identifying significant instabilities
during model transitions, demonstrating its versatility across various model types and calibration methods.
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1. Introduction
The #1 job site in the world, Indeed is committed to offer-
ing job seekers with high-quality opportunities through ad-
vanced recommendation systems. To maintain the accuracy
of recommendations, we regularly retrain and enhance our
models to effectively accommodate shifts in the job market
and job seeker behavior. However, the process of retraining
might produce diverse outcomes, occasionally resulting in
unforeseen variations in scores, thereby compromising user
confidence and product excellence [1].
Most research on recommender systems has generally

concentrated on accuracy, businessmetrics, and diversity, of-
ten overlooking the crucial aspect of stability. Stability mea-
sures how recommendations change with updates and their
consistency over time [2]. Traditional definitions empha-
size strict alignment with prior predictions [1, 3], whereas
more recent studies acknowledge the possibility of some
deviations to accommodate new information [4]. We de-
fine stability as the ability to provide reliable and consis-
tent recommendations while effectively adapting to changes
without significant interruptions.

Point estimation methods, such as the mean or median
score of prediction scores, are insufficient to assess the stabil-
ity of recommender systems [5]. We utilize the Population
Stability Index (PSI), a risk modeling metric that measures
consistency between two probability distributions based on
the Kullback-Leibler divergence [6, 7, 8, 9].

Limited research was conducted to understand the proper-
ties of PSI. There is a general rule of thumb for interpreting
PSI values[8]: if PSI is less than 10%, there is no change
in the population; if PSI is between 10% and 25%, the pop-
ulation has changed slightly, and investigation is needed;
and if PSI exceeds 25%, there are significant changes in the
population, and the models should be retrained[6, 7, 10].
Later research has discussed the arbitrary nature of the gen-
eral ‘rule of thumb’ and explored the statistical properties
of PSI[10].

This paper presents the Cumulative Population Stability
Index (CPSI), an improved version of PSI. CPSI efficiently
identifies alterations in distribution patterns and maintains
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robustness against noise. We demonstrate the efficacy of
CPSI through simulations and real-life examples.

2. Related Work

2.1. Measurement of Stability: PSI
PSI is a metric for assessing population stability between
two samples. It classifies scores into predefined bins or cate-
gories, evaluating the difference between a given probability
distribution and a reference distribution.

Let 𝑁 be the sample size for the reference population and
𝑀 be the sample size for the target population, each being
divided into 𝐵 bins. Then PSI can be defined as:

𝑃𝑆𝐼 =
𝐵
∑
𝑖=1

( ̂𝑝𝑖 − �̂�𝑖) × (ln ̂𝑝𝑖 − ln �̂�𝑖) (1)

where 𝑛𝑖 and 𝑚𝑖 are counts in the 𝑖-th bin, ∑𝑛𝑖 = 𝑁,
∑𝑚𝑖 = 𝑀, ̂𝑝𝑖 =

𝑛𝑖
𝑁 , and �̂�𝑖 =

𝑚𝑖
𝑀 . ln denotes the natural

logarithm.

2.2. Limitation of PSI
PSI focuses on local bin proportions, ignoring cumulative
distribution patterns, which can result in false positives
during cumulative score shifts. Additionally, fixed bin
boundaries based on percentiles may not accurately capture
skewed distributions.

2.2.1. Local Comparisons

PSI focuses on local comparisons of bin proportions. PSI
does not account for cumulative or global distribution pat-
terns.

According to Figure 1, the PSI value is 28.4%. Based on the
general rule of thumb, if the PSI exceeds 25%, it strongly sug-
gests that the model needs to be recalibrated. However, the
Kolmogorov-Smirnov (KS) goodness-of-fit test [11] yielded
a p-value of 0.173, indicating that there is no significant drift
in the predictions. Additionally, the Global Comparisons
(CDF) plots demonstrate that the cumulative distribution
functions (CDFs) of the two distributions remain closely
aligned.

1

mailto:yolandac@indeed.com
mailto:mjain@indeed.com
mailto:vsawhney@indeed.com
mailto:lwu@indeed.com
https://creativecommons.org/licenses/by/4.0/deed.en


Yingshi Chen et al. CEUR Workshop Proceedings 1–7

Figure 1: Comparative Analysis of Score Distributions with PSI.

2.2.2. Fixed Bin Boundaries

PSI uses predetermined bin limits determined on percentiles
of the anticipated distribution. Although this method can
effectively partition the data into equal-sized groups, it may
not accurately capture the actual distribution’s structure,
especially for distributions that are skewed or have several
modes.
The fixed bin boundaries intersect many modes of the

distribution, which may result in an inaccurate representa-
tion of the discrepancies. This can result in bins containing
many peaks or valleys, leading to less accurate stability
assessments.

Figure 2: Multi-modal Distribution Comparison with PSI.

3. Proposed Method
In this section, we propose the Cumulative Population Sta-
bility Index (CPSI) to provide a comprehensive view of dis-
tribution changes. CPSI provides a detailed assessment of
distributional changes by computing localized cumulative
sums, allowing tailored analysis and evaluation within slid-
ing windows of bins.

3.1. Definition
The CPSI is defined as:

CPSI =
𝐵
∑
𝑖=1

( ̃𝑃𝑖−𝑘,𝑖+𝑘 − �̃�𝑖−𝑘,𝑖+𝑘) × ln (
̃𝑃𝑖−𝑘,𝑖+𝑘

�̃�𝑖−𝑘,𝑖+𝑘
) (2)

where:

• ̃𝑃𝑖−𝑘,𝑖+𝑘 and �̃�𝑖−𝑘,𝑖+𝑘 are the cumulative proportions
of the initial and new distributions, respectively,
from bin max(1, 𝑖 − 𝑘) to bin min(𝐵, 𝑖 + 𝑘), defined
as:

̃𝑃𝑖−𝑘,𝑖+𝑘 =
min(𝐵,𝑖+𝑘)

∑
𝑗=max(1,𝑖−𝑘)

𝑃𝑗 and �̃�𝑖−𝑘,𝑖+𝑘 =
min(𝐵,𝑖+𝑘)

∑
𝑗=max(1,𝑖−𝑘)

𝑄𝑗

• 𝑃𝑖 and 𝑄𝑖 represent the proportions in the reference
and current (prediction) distributions, respectively,
for bin 𝑖.

• 𝐵 is the total number of bins.
• 𝑘 is the number of bins included in the cumulative
sum on either side of bin 𝑖.

• 𝑁 and 𝑀 are the sample sizes of the reference and
current (prediction) distributions, respectively.

• ln denotes the natural logarithm.

CPSI can be viewed as a variation of PSI. Recall the defi-
nition of PSI:

𝑃𝑆𝐼 =
𝐵
∑
𝑖=1

( ̂𝑝𝑖 − �̂�𝑖) × (ln ̂𝑝𝑖 − ln �̂�𝑖) (3)

When comparing these definitions, we see that CPSI is a
transformation of PSI, where ̂𝑝𝑖 in PSI corresponds to ̃𝑃𝑖−𝑘,𝑖+𝑘
in CPSI.

3.2. Statistical Properties of CPSI
3.2.1. Expectation of CPSI

As proved by Yurdakul and Naranjo [10], the expectation of
PSI is:

𝐸(PSI) =
𝐵

∑
𝑖=1

(𝑝𝑖 − 𝑞𝑖)(ln 𝑝𝑖 − ln 𝑞𝑖) +
𝐵 − 1
𝑁

+ 𝐵 − 1
𝑀

+
𝐵 − ∑𝐵

𝑖=1
𝑞𝑖
𝑝𝑖

2𝑁
+

𝐵 − ∑𝐵
𝑖=1

𝑝𝑖
𝑞𝑖

2𝑀
(4)

Since ̂𝑝𝑖 in PSI corresponds to ̃𝑃𝑖−𝑘,𝑖+𝑘 in CPSI, the ex-
pected value 𝐸(CPSI) can be expressed analogously to
𝐸(PSI), with ̃𝑃𝑖−𝑘,𝑖+𝑘 and �̃�𝑖−𝑘,𝑖+𝑘 substituting for ̂𝑝𝑖 and �̂�𝑖,
respectively.

𝐸(CPSI) =
𝐵

∑
𝑖=1

( ̃𝑃𝑖−𝑘,𝑖+𝑘 − �̃�𝑖−𝑘,𝑖+𝑘)(ln ̃𝑃𝑖−𝑘,𝑖+𝑘 − ln �̃�𝑖−𝑘,𝑖+𝑘)

+𝐵 − 1
𝑁

+ 𝐵 − 1
𝑀

+
𝐵 − ∑𝐵

𝑖=1
�̃�𝑖−𝑘,𝑖+𝑘
̃𝑃𝑖−𝑘,𝑖+𝑘

2𝑁
+

𝐵 − ∑𝐵
𝑖=1

̃𝑃𝑖−𝑘,𝑖+𝑘
�̃�𝑖−𝑘,𝑖+𝑘

2𝑀
(5)

Under the null hypothesis 𝐻0 ∶ 𝑝𝑖 = 𝑞𝑖, 𝑖 = 1, … , 𝐵, we have:

̃𝑝𝑖−𝑘,𝑖+𝑘 = �̃�𝑖−𝑘,𝑖+𝑘

2
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Where:

̃𝑃𝑖−𝑘,𝑖+𝑘 =
min(𝐵,𝑖+𝑘)

∑
𝑗=max(1,𝑖−𝑘)

𝑃𝑗 and �̃�𝑖−𝑘,𝑖+𝑘 =
min(𝐵,𝑖+𝑘)

∑
𝑗=max(1,𝑖−𝑘)

𝑄𝑗

The expectation of CPSI is:

𝐸(CPSI) = (𝐵 − 1) ( 1
𝑁

+ 1
𝑀
) (6)

Proof. Under𝐻0, the first term is 0. Also 𝐵−∑𝐵
𝑖=1

�̃�𝑖−𝑘,𝑖+𝑘
̃𝑃𝑖−𝑘,𝑖+𝑘

=

0 and 𝐵 − ∑𝐵
𝑖=1

̃𝑃𝑖−𝑘,𝑖+𝑘
�̃�𝑖−𝑘,𝑖+𝑘

= 0.

3.2.2. Theorem and Variance Calculation

Yurdakul and Naranjo[10] use the following theorem to
identify the variance of PSI. Theorem 1 Let 𝐸(𝑌 ) = 𝜇 and
Cov(𝑌 ) = Σ. The proof of this theorem can be found in
Searle’s [12].

Then:

Var(𝑌 ′𝐴𝑌) = 2Tr(𝐴Σ𝐴Σ) + 4𝜇′𝐴Σ𝐴𝜇. (7)

Given that 𝜇 = 𝐸(𝑌 ) = 0, Theorem 1 implies:

Var(𝑌 ′𝐴𝑌) = 2Tr(𝐴Σ𝐴Σ).

For PSI, assuming that the null hypothesis 𝐻0 ∶ 𝑝𝑖 =
𝑞𝑖, 𝑖 = 1, … , 𝐵 is true, they prove that µ = 0 and

𝑇 𝑟(𝐴Σ𝐴Σ) = ( 1
𝑁

+ 1
𝑀
)
2
×

𝐵
∑
𝑖=1

(1 − 𝑝𝑖)

finally leading to

Var(PSI) = 2 ( 1
𝑁

+ 1
𝑀
)
2
× (𝐵 − 1)

Recall that CPSI can be viewed as a transformation of
PSI, where the elements of the matrix 𝐴 are replaced by
cumulative sums over 𝑘 bins:

CPSI* =
𝐵
∑
𝑖=1

( ̃𝑃𝑖−𝑘,𝑖+𝑘 − �̃�𝑖−𝑘,𝑖+𝑘)
2 1

̃𝑃𝑖−𝑘,𝑖+𝑘
= 𝑌 𝑇�̃�𝑌

Under 𝐻0, we have

�̃� =

⎡
⎢
⎢
⎢
⎢
⎣

𝑤 1
̃𝑃1−𝑘,1+𝑘

0 ⋯ 0

0 1
̃𝑃2−𝑘,2+𝑘

⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

̃𝑃𝐵−𝑘,𝐵+𝑘

⎤
⎥
⎥
⎥
⎥
⎦

Thus, the variance of CPSI is:

Var(CPSI) = 2Tr(�̃�Σ�̃�Σ).

Under the null hypothesis 𝐻0 ∶ ̃𝑝𝑖−𝑘,𝑖+𝑘 = �̃�𝑖−𝑘,𝑖+𝑘, 𝑖 =
1, … , 𝐵, for CPSI we can say that µ = 0 and

𝑇 𝑟(�̃�Σ�̃�Σ) = ( 1
𝑁

+ 1
𝑀
)
2
×

𝐵
∑
𝑖=1

(1 − ̃𝑃𝑖−𝑘,𝑖+𝑘)

= ( 1
𝑁

+ 1
𝑀
)
2
(𝐵 − 1)

Then:

Var(CPSI) = 2 ( 1
𝑁

+ 1
𝑀
)
2
(𝐵 − 1)

3.2.3. Robustness and Invariance of CPSI

The distribution of CPSI, controlled by 𝐵, 𝑁, and 𝑀 (total
number of bins, and sample sizes of the reference and target
populations, respectively), is unaffected by the underlying
variable distributions, ensuring it remains a reliable and
robust measure of divergence between model predictions.

3.3. Parameter Selection
3.3.1. Determining Sample Sizes 𝑁 and 𝑀

The robustness and dependability of the Cumulative Popu-
lation Stability Index (CPSI) depend critically on the sample
sizes of the target population 𝑀 and the reference popu-
lation 𝑁. The sensitivity and stability of the index can be
greatly affected by the choice of 𝑁 and 𝑀.

To make sure that 𝑁 and𝑀 are big enough to find signifi-
cant differences, we have performed a power analysis. Fur-
thermore, the selection of these parameters can be guided
by preliminary exploratory data analysis, and model per-
formance can be optimized through iterative refinement. A
final decision between 𝑁 and 𝑀 should take practical limits,
stability, and sensitivity into account.

3.3.2. Determining the Optimal Number of Bins

Determine the number of bins is crucial to accurately cap-
ture the distributional characteristics of the data. An optimal
value for the number of bins must balance both bias and
variance. There are several studies that have attempted to
determine an optimal number of bins, each offering different
advantages based on the size and distribution of the data:

Square-Root Choice:

𝐵 = √𝑁

The square-root choice method recommends using the
square root of the data points to determine the number
of bins, providing a balanced approach for moderate-sized
datasets[13].

Sturges’ Formula:

𝐵 = ⌈log2 𝑁 + 1⌉

Sturges’ formula, commonly used for smaller datasets, as-
sumes that the data follow an approximate normal distribu-
tion. The objective is to ascertain an appropriate number of
bins that properly reflect the distribution of the data points,
while avoiding unnecessary complexity in the model.[14].

Rice Rule:
𝐵 = ⌈2 × 𝑛1/3⌉

The Rice Rule proposes determining the appropriate number
of bins by achieving a balance between granularity and
simplicity. This method is particularly effective for larger
datasets.[15] [16].

Each of these methods provides a pragmatic way to select
bins, depending on the specific attributes of the data set and
the objectives of the research. We looked at a few different
approaches to figure out how many bins there should be,
and we used those approaches to figure out the values to
work from. We then analyzed the trade-off between bias
and variance as a function of the parameter 𝐵, with 𝑁 and
𝑀 kept constant. The parameter 𝐵 was selected to minimize
the overall error.
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3.3.3. Determining the number of 𝑘

A key factor in balancing the sensitivity and robustness
of the Cumulative Population Stability Index (CPSI) is the
selection of 𝑘, which regulates the number of bins included
in the cumulative sum on either side of a bin 𝑖.
We determined the optimal value of 𝑘, using a combina-

tion of domain-specific knowledge and exploratory data
analysis. We have deliberately chosen to maximize the no-
ticeable variability in CPSI values during calibration while
minimizing penalty for small shifts between adjoining bins.
This approach aligns with our objective of reducing penal-
ization for modest distribution shifts caused by calibration,
so that predictions remain reasonably close to the true like-
lihood.

3.4. Rule of Thumb
By comparing subsequent model version distributions us-
ing the Cumulative Population Stability Index (CPSI), we
can quantify changes and establish a benchmark for sta-
bility between iterations. To effectively apply CPSI, we
require two population samples: the base sample, which
represents the score distribution from a previous model ver-
sion, and the test sample, representing the predicted score
distribution from the current model version. We propose
the following ’rule of thumb’ values derived from empir-
ical data, specifically using the 90th and 99th percentiles.
(details in Appendix 8.1) to monitor system stability across
model retraining versions by assessing the CPSI measure
over different historical time frames.

4. Results: evaluating the
Effectiveness of CPSI

We conducted a simulation study to assess CPSI perfor-
mance using the normal approximation for critical values.
Based on the statistical properties of CPSI, we can construct
the following test:

CPSI > ( 1
𝑁

+ 1
𝑀
) (𝐵 − 1) + 𝑧0.95 (

1
𝑁

+ 1
𝑀
) × √2(𝐵 − 1)

where the right-hand side (RHS) is the critical value, de-
fined as the 95th percentile of the CPSI normal approxima-
tion.
We created a right-skewed baseline using a Beta distri-

bution and introduced small shifts and noise to simulate
real-world conditions. PSI and CPSI values were calculated
for the expected and new distributions. We sampled 10,000
values from the baseline and challenger distributions, con-
ducting 30 simulations. The CPSI results were computed
with the number of bins (B) set to 1,000 and K set to 1. We
compared these results with the critical value of 0.0215, as
suggested by normal approximation.
The results table (Table 1) along with the plot (Fig.3),

shows that PSI identified small shifts as unstable, indicat-
ing a high sensitivity to local changes. In contrast, CPSI
smooths out local variations and focuses on cumulative
proportions, proving robust against noise while effectively
detecting distribution shifts.

Figure 3: PSI and CPSI plots for different shifts and noise levels

shift noise PSI_rejection_rate CPSI_rejection_rate
0.005 0.01 23.33 0.00
0.005 0.02 36.67 0.00
0.005 0.03 100.00 0.00
0.005 0.04 100.00 0.00
0.005 0.05 100.00 0.00
0.010 0.01 100.00 0.00
0.010 0.02 100.00 0.00
0.010 0.03 100.00 0.00
0.010 0.04 100.00 0.00
0.010 0.05 100.00 46.67
0.015 0.01 100.00 3.33
0.015 0.02 100.00 0.00
0.015 0.03 100.00 0.00
0.015 0.04 100.00 33.33
0.015 0.05 100.00 100.00
0.020 0.01 100.00 100.00
0.020 0.02 100.00 100.00
0.020 0.03 100.00 100.00
0.020 0.04 100.00 100.00
0.020 0.05 100.00 100.00

Table 1
Rejection Rates for different shifts and noise levels

5. Discussion: Real-world
applications

Our system uses various algorithms for Apply Rate predic-
tion, focusing on Deep&Cross V2 [17] models in our ad
recommender systems. Despite DNNs’ strong prediction
performance, identical DNN models trained on the same
data can yield different results [18]. Detecting significant
distribution shifts and raising accurate alarms is challenging.

We conducted a re-evaluation of a stability experiment for
offline assessment, which consisted ofmillions of emails sent
to job seekers. This experiment aimed to test a treatment
designed to mitigate instability between different retrained
versions of predictive models. Treatments included altering
the calibrationmethod and transitioning the training dataset
splitting from timestamps to job IDs. The accompanying
figure (Fig.4) illustrates the effectiveness of this treatment
in reducing instability, measured by the mean apply rate.
Observations showed that the control models experienced
spikes and sudden drops, whereas the version transitions
in the test model were markedly smoother. Although point
estimates alone are insufficient to confirm stability, they do
offer some directional confidence.
This experiment provides a valuable case study for eval-

uating the effectiveness of the Cumulative Population Sta-
bility Index (CPSI) and comparing it with other population
stability metrics. These metrics include the Population Sta-
bility Index (PSI), the recently introduced Population Ac-
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Figure 4: Comparison of Mean Apply Rates: Control vs. Test

curacy Index (PAI) [19], and the Kolmogorov-Smirnov (KS)
goodness-of-fit test [11].
The Population Accuracy Index (PAI) offers an alterna-

tive approach to scorecard stability testing by measuring
the change in the variance of the estimated mean response
since development. PAI Interpretation: 0 ≤ PAI < 1.1 in-
dicates no substantial change, 1.1 ≤ PAI < 1.5 suggests a
small change, and PAI ≥ 1.5 indicates a substantial change.
The Kolmogorov-Smirnov (KS) test statistic quantifies the
maximum difference between two empirical distribution
functions, providing a measure of the discrepancy between
observed and expected distributions.

Versions CPSI PAI PSI KS_statistic KS_p_value Treatment

Model B compared with A 0.04 0.971 0.054 0.07 0 Control
Model C compared with B 0.071 1.145 0.085 0.113 0 Control
Model D compared with C 0.011 0.996 0.025 0.026 0 Control
Model E compared with D 0.019 0.987 0.030 0.04 0 Control
Model B’ compared with A’ 0.012 0.959 0.028 0.021 0 Test
Model C’ compared with B’ 0.011 1.025 0.027 0.018 0 Test
Model D’ compared with C’ 0.01 1.036 0.023 0.011 0 Test
Model E’ compared with D’ 0.011 0.966 0.025 0.025 0 Test

Table 2
Comparison of Models with Various Metrics

KS test is overly sensitive to small changes when the
sample size is large, often labeling any model changes as
instability [20]. Even minor distributional changes can lead
to the rejection of population stability at nominal signif-
icance levels, potentially misrepresenting true instability.
Similarly, PSI is prone to detecting small local changes, fre-
quently marking all movements as unstable.

However, the experimental observations are at odds with
the PAI results, which suggest little change between model
transitions in both the test and control groups.
This study demonstrates how CPSI outperforms other

well-established techniques in determining population sta-
bility due to its resilience and comprehensiveness.

6. Monitoring System
Implementation with CPSI

In this section, we present the implementation of an online
recommender monitoring system that incorporates CPSI
Metrics.
We designed a testing infrastructure to leverage the re-

quests coming to the incumbent model in production to
test against the challenger model which was trained us-
ing a different set of data. The ‘incumbent’ model refers
to the machine learning model that is currently deployed
in production and actively handling real-world requests or
tasks. It is the established model that new or ‘challenger’
models are compared against to determine if an upgrade

or replacement is warranted. The architecture of the said
infrastructure contains two modules: one to poll for a newly
trained challenger model called Model Score Verification
Initiator and another to test it against the incumbent model
called Model Score Verifier.
Step by step depiction of how the infrastructure is laid

out to perform testing.

• Gathering data: Collect a set of sampled requests
from the past 14 days. These requests should include
either a list of multiple jobs being matched to one job
seeker or a list of multiple job seekers being matched
to one job. They were originally inferred using the
model being tested in the past.

• Preparing testing infrastructure: Set up the nec-
essary testing environment, including Model Score
Verification Initiator, databases, and any required
software or tools.

• Triggering test: Initiate the test by triggering an
instance of the Model Score Verifier for the models
being tested.

• Loading the right models: Model Score Verifier
ensures that the correct model are loaded and ac-
tive in the application responsible for inferring the
requests.

• Sending and inferring requests: Forward the
gathered requests to the loaded models for infer-
ence.

• Logging responses: Record the responses gener-
ated by themodels for later analysis, each containing
one score attached to multiple unique job-job seeker
pairs, respectively, that were part of the request.

• Deciding to promote or drop: On gathering 100k
unique pairs with their relevance score we calculate
CPSI. The process of gathering 100k unique pairs
with their scores is repeated 30 times, and a mean
CPSI score is calculated. Evaluate the results to de-
cide whether the testedmodel should be promoted to
production or discarded using the mean CPSI score.
By algorihtms such as Jackknife resampling, we can
find the standard error of CPSI through the 30-time
calculation. This can be used to calculate the con-
fidence interval of CPSI. Here the number 30 is to
insure we can have a statistically sound conclusion.

• Triggering alerts: If the test identifies any critical
issues or anomalies, automatically trigger alerts to
notify the relevant stakeholders.

Figure 5 provides a simplified overview of the monitoring
system. This system enables proactive monitoring, investi-
gation, and improvement of recommendation system per-
formance in production. By integrating this system into our
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Figure 5: Using CPSI for Model deployment monitoring

workflow, we can detect major issues early without depend-
ing on manual monitoring, preventing negative impacts on
customer trust and reducing churn.

7. Conclusion and Future Work
In this paper, we introduced the Cumulative Probability Sta-
bility Index (CPSI) as a tool formonitoring large-scale recom-
mender systems. We demonstrated CPSI’s effectiveness in
detecting significant instabilities during model transitions
and its robustness against prediction variations through
simulations, real-world implementations, and monitoring
systems. CPSI has proven to be a reliable metric for evaluat-
ing the stability of recommender systems, both offline and
online, especially for DNN-based recommendation systems.
We believe CPSI has potential applications in other domains
as well.
In the future, we aim to extend the application of the

proposed stability monitoring methods to a broader range
of scenarios, including various model types such as rein-
forcement learning models. In addition, we plan to evaluate
the effectiveness of these methods in different domains, ex-
plore their scalability in large-scale systems, and assess their
adaptability to real-time monitoring environments.
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8. Appendix

8.1. Determining Critical Values for CPSI
There are two approaches for determining the critical val-
ues for CPSI. The first and most straightforward approach
involves utilizing the normal approximation. Instead of
relying on predetermined critical values, it is more advan-
tageous to utilize the theoretical percentiles of the normal
approximation distribution [10]. As seen in the preceding
section, the distribution of CPSI is affected by the parame-
ters B, N, and M. Using the normal approximation, we can
determine the desired percentiles to establish the critical
values.

Figure 6: Normal Approximation of CPSI.

The second method involves using the empirical distri-
bution of CPSI values collected during production. This
method does not depend on hypothetical estimations, but
rather utilizes actual distribution data. Through the imple-
mentation of offline simulations using historical prediction
data, we can collect results to determine the critical values
of CPSI. We found that using the empirical distribution of
CPSI values to set critical values is more promising. The

critical value should reflect the system’s tolerance for in-
stability. We have identified inherent instability resulting
from variability in training neural network models with
medium-sized datasets. Sorely depending on the normal ap-
proximation may lead to false alerts, as it might misinterpret
natural score fluctuations as significant deviations. Hence,
using empirical critical values from actual system perfor-
mance data provides a more accurate and reliable stability
assessment.
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