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Abstract
We present the Multilingual Entity Linking of Occupations (MELO) Benchmark, a new collection of 48 datasets for evaluating
the linking of entity mentions in 21 languages to the ESCO Occupations multilingual taxonomy. MELO was built using
high-quality, pre-existent human annotations. We conduct experiments with simple lexical models and general-purpose
sentence encoders, evaluated as bi-encoders in a zero-shot setup, to establish baselines for future research. The datasets and
source code for standardized evaluation are publicly available at https://github.com/Avature/melo-benchmark.
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1. Introduction
The current trend in the digital transformation of human
resources (HR) processes is the integration of artificial in-
telligence (AI) components that can improve automation
and operational efficiency. These systems often need to
process input data in the form of natural language text,
which can be noisy and diverse in terms of language and
other domain-specific aspects.

One common approach to deal with this challenge is
the application of entity linking (EL) methods. EL helps
normalizing input data into standardized entities within
well-curated taxonomies. These taxonomies facilitate
interoperability across different systems and, when mul-
tilingual, enable the integration of information across
languages. In highly specialized domains like HR and
recruiting, the development of EL methods faces signifi-
cant challenges, particularly when training resources are
scarce or nonexistent [1, 2]. These challenges are further
amplified in multilingual environments [3, 4]. Therefore,
achieving accurate entity resolution across languages
is key to ensuring the consistency and effectiveness of
digitalized HR systems in a global setting.

Previous research in the application of AI within the
HR domain has made extensive use of taxonomies, such
as occupation and skill classifications [5, 6, 7, 8, 9, 10].
These HR-specific taxonomies have been used for nor-
malizing raw data [11, 12, 13, 14, 15, 16, 17], removing
noise and enabling AI models to operate on standard-
ized information, which in turn leads to more accurate
and reliable outcomes. Substantial progress has been
made, particularly in the normalization of occupational
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data [18, 19, 20, 21, 22]. However, despite these advance-
ments, there is still a surprising lack of high-quality pub-
lic evaluation benchmarks for measuring progress con-
sistently in this important area.

To address this gap, we propose the Multilingual En-
tity Linking of Occupations (MELO) Benchmark, a new
collection of 48 datasets designed to evaluate multilin-
gual EL tasks. This benchmark leverages pre-existing,
high-quality human annotations and covers 21 languages.
Furthermore, we present an experimental study using the
new benchmark to evaluate the performance of both sim-
ple lexical baselines and existing deep learning models
employed as zero-shot bi-encoders. Our goal is for MELO
to serve as a valuable resource for advancing research
and fostering innovation in this field.

The main contributions of this work are:

• We introduce the MELO Benchmark, a suite of
48 datasets involving monolingual, cross-lingual,
and multilingual tasks in 21 languages. Each
dataset corresponds to an entity linking task
framed as a ranking problem, where queries and
corpus elements are occupation names taken
from a source and a target taxonomy, respec-
tively, and binary-relevance annotations are de-
rived from high-quality crosswalks between the
taxonomies. Additionally, we release code for
standardizing the evaluation of models on this
benchmark.

• We provide experimental results for both simple
lexical systems and state-of-the-art deep learn-
ing models evaluated as zero-shot bi-encoders
on MELO, to serve as baselines for future re-
search. We find that, while the lexical baselines
perform fairly well, the semantic baselines gener-
ally achieve better results, particularly in cross-
lingual tasks. However, there remains significant
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room for improvement.

To the best of our knowledge, MELO is the first public
evaluation benchmark to address the task of multilingual
entity linking in the HR domain.

2. Background
In this Section, we introduce the context necessary for
understanding the subsequent task definitions (§3), the
methodology employed in constructing the benchmark
(§4), and the related work (§6).
Entity Linking. Given a knowledge base E and a query
mention 𝑞, the task of Entity Linking (EL) involves iden-
tifying the correct entity 𝑒 ∈ E to which the mention is
referring. In principle, the structure of the knowledge
base E can range from a flat catalog of unrelated enti-
ties to a complex and heterogeneous ontology. In this
work we focus on taxonomies of a single type of entity
(i.e. occupations).

Inspired by the multilingual formulation proposed by
Botha et al. [3], we consider each entity 𝑒 as a language-
agnostic concept with associated language-specific tex-
tual information. For each language 𝑙 in a set of supported
languages L𝑡𝑎𝑥, any entity may have a set of names (syn-
onymous between each other), a description, and exam-
ple sentences where the concept is used. The query 𝑞 is
a text string in some language 𝑙𝑞, with no prior assump-
tions about the relationship between 𝑙𝑞 and the set L𝑡𝑎𝑥

of supported languages1.
In principle, the system may receive a query mention

𝑞 that refers to an entity that does not exist in the taxon-
omy, or it may not refer to any entity at all. This problem,
known as out-of-KB or NIL prediction [23], falls outside
the scope of this work. Additionally, it is typical in the EL
community to allow the system to know the textual con-
text in which the mention occurs, aiding in the resolution
of ambiguity [24]. This aspect is also beyond the scope
of our work, as the data we use to build our datasets only
includes unnormalized occupation names as queries.

Entity linking can be framed as a ranking task [25]:
given a query 𝑞, the system produces a score 𝑠(𝑞, 𝑒) for
each 𝑒 ∈ E and the predicted entity ̂𝑒 is computed as:

̂𝑒(𝑞) = argmax
𝑒 ∈ E

𝑠(𝑞, 𝑒)

and rank-based evaluation metrics can be used to study
the performance. A typical approach to this task breaks
it into two stages. The first is the Candidate Generation
Stage, where an initial ranking is obtained using a low-
latency method, trying to optimize for recall. In the

1For example, setting L
𝑡𝑎𝑥 = {𝑙𝑞} would result in a monolingual

task, and L
𝑡𝑎𝑥 = {𝑙𝑥} with 𝑙𝑞 ≠ 𝑙𝑥 involves a cross-lingual task.

More generally, a set L𝑡𝑎𝑥 with higher cardinality can define a
multilingual task.

second stage, the Re-ranking Stage, a more costly but
higher-precision method is applied to evaluate the top
elements in the preliminary rank.

Obtaining annotated data for training such systems
is costly, particularly for tasks involving custom tax-
onomies or low-resource languages [4]. To mitigate this
problem, many techniques have been proposed for lever-
aging transfer learning to obtain good performance in
zero-shot EL scenarios [1, 2]. State-of-the-art methods
typically use a bi-encoder for the candidate generation
stage, and a cross-encoder for the re-ranking stage.
Multilingual Taxonomies. For the purposes of this
work, we define a taxonomyE as a directed acyclic graph
(DAG) where nodes are concepts and edges represent
binary IS-A relationships [26] between concepts. The
tail concept (child) is a hyponym of the head concept
(parent) and therefore represents a narrower meaning.
Conversely, the parent is a hypernym of the child and
represents a broader meaning, i.e. a category to which
the child belongs. Concepts are allowed to have many
parents.

In a multilingual taxonomy, concepts are language-
agnostic but they have language-specific properties, such
as a set of names, a description, or usage examples. In
other words, every concept has one set of names for each
language supported in the taxonomy. The set of names
for a concept for a language are considered synonyms
between each other. If a lexical entry is attached to more
than one concept, this implies polysemy.
Occupation Taxonomies. Several public occupation
taxonomies were developed to classify, standardize, and
organize information related to job titles and roles found
in the workforce.

One popular and influential occupations taxonomy is
the European Skills, Competences, Qualifications, and
Occupations (ESCO) ontology, a collection of multilin-
gual and interrelated taxonomies created and maintained
by the European Union [27, 28]. It includes 3,039 occu-
pation concepts in its latest version, each with names
and definitions (descriptions) in 28 languages. Every
concept has one or more names in every supported lan-
guage. The names are compliant with the terminological
guidelines defined by ESCO [29]. All the names of a par-
ticular concept in a particular language are considered
synonyms with each other. Also, for a particular con-
cept, the language-specific name sets can be considered
parallel data from a translation point of view.

Another important example is the O*NET-SOC taxon-
omy. The Occupational Information Network (O*NET) is
developed and maintained by the United States govern-
ment [30, 31] to standardize information relevant to the
labor market, based on the 2018 Standard Occupational
Classification (SOC) system2. It contains information

2https://www.bls.gov/soc/



in English about 1,016 occupations, each with a set of
names and a description.

Additionally, many other countries have developed
their own national taxonomies or terminologies for occu-
pations. For example, the Federal Employment Agency
in Germany developed the Klassifikation der Berufe 2010
(KldB 2010) which is a terminology used to standardize
the information in the German language about occupa-
tions [32].

To achieve interoperability between some of these tax-
onomies, mappings —also called crosswalks— were de-
veloped and made public. These mappings establish an
alignment between two given taxonomies. In particu-
lar, the European Union published many crosswalks [33]
that map concepts from national taxonomies, which are
typically monolingual, into ESCO. The process described
in Section 4 uses this information as a gold standard to
create the datasets for the MELO Benchmark.

3. Task
As mentioned already, the task consists of multilingual
Entity Linking of occupations into the ESCO taxonomy,
which we denote by E. Given a query mention 𝑞, which
is a text string expressing the non-normalized name of
an occupation without surrounding context, we need
to find the best semantic match in ESCO, namely the
correct entity 𝑒 ∈ E. Every occupation in the taxonomy
has textual information in all languages 𝑙 ∈ L

𝑡𝑎𝑥. The
query is expressed in language 𝑙𝑞, which we make no
prior assumptions about.

For evaluation, we operationalize the task as a rank-
ing problem with binary-relevance annotations, where
a query 𝑞 is used to rank all the strings 𝑐𝑖 in a corpus
C. The corpus is a collection of lexical terms denoting
occupation names, and it is derived from the taxonomyE.

To build the corpus C, we first define the set of target
languages for the corpus, as a subsetL𝑐 ⊂ L

𝑡𝑎𝑥. Then, we
collect every surface form (name) for every occupation
corresponding to those languages. That is, starting from
an empty set, we traverse E and, for each occupation
𝑒, we add every name available in any language in L

𝑐.
As a result, C is the collection of every name of every
occupation in every target language.

The annotations consist of the set of relevant corpus
elements for each query. Given the correct entity 𝑒 for a
query 𝑞, then those corpus elements 𝑐𝑖 that were obtained
from the surface forms of 𝑒 are considered to be rele-
vant, while any other element in the corpus is considered
irrelevant.

Because the goal is to find the relevant concept 𝑒 in
the taxonomy for the given query (i.e. to solve the entity
linking formulation of the task), obtaining at least one
surface form 𝑐𝑖 associated with the relevant concept at

the top of the ranking is sufficient for correctly perform-
ing the task. In other words, when ranking the corpus
elements for a query, the position in the ranking of the
highest-ranked relevant surface form is the measure we
aim to evaluate. For this reason, we evaluate the base-
line models with the following metrics: mean reciprocal
rank (MRR) and top-𝑘 accuracy (A@𝑘).

4. Datasets
The MELO Benchmark consists of 48 datasets, where
each is an instance of the ranking task as described in
Section 3. While the set of queries differs among the
datasets, the target taxonomy is always ESCO Occupa-
tions. Although the underlying concepts in the corpus are
the same, the surface forms —specifically, the occupation
names— vary across datasets, since they are presented in
different subsets of ESCO languages.

We leverage existing crosswalks3, which are high-
quality mappings between ESCO Occupations and other
taxonomies [34, 33], to build the datasets. Two datasets
are derived from the mapping between ESCO and the
O*NET-SOC Taxonomy, while the remaining ones are de-
rived from themapping between ESCO and the official oc-
cupation terminologies from several European countries.
While ESCO is a multilingual taxonomy, the national
terminologies are monolingual. Elements between the
taxonomies are assigned SKOS relationships [35] such as
exact match, narrow match, broad match, or close match.

For each crosswalk, we build two evaluation datasets:
a monolingual dataset and a cross-lingual dataset. In
both cases, the set of queries are those elements in the
national terminologies (or O*NET) that either have only
one exact match in ESCO or have zero exact matches and
only one narrow match. Therefore, we are filtering out
semantically ambiguous queries, e.g. if they have more
than one exact matches, or that can’t be assigned to a
specific concept in ESCO because they are not specific
enough, for example if they only have broad or close
matches.

The language of the set of queries, 𝑙𝑞, depends on the
national terminology. Regarding the languages used
for the corpus, we select a different subset of the lan-
guages in ESCO for each modality. For the monolin-
gual task we set L𝑐 = {𝑙𝑞}, and for the cross-lingual
we set L𝑐 = {English}. Exceptionally, since for O*NET
the query language is already English, in this case in-
stead of a cross-lingual task we define a multilingual
task, where the corpus languages are English, German,
Spanish, French, Italian, Dutch, Portuguese, and Polish
(We intentionally include English, the query language.)
As mentioned in the previous Section, the annotations

3https://esco.ec.europa.eu/en/use-esco/
eures-countries-mapping-tables
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Table 1
Datasets in the MELO Benchmark. † USA-en-xx is the only multilingual dataset. L𝑥𝑥 denotes the set of languages of the
elements in the corpus: English, German, Spanish, French, Italian, Dutch, Portuguese, and Polish.

Task Name Source Taxonomy
Queries

Target Taxonomy
Corpus Elements

Language # Language #
USA-en-en O*NET en 633 ESCO v1.1.0 en 33,813
USA-en-xx† O*NET en 633 ESCO v1.1.0 L

𝑥𝑥 150,140
AUT-de-de Austria de 1,120 ESCO v1.1.0 de 19,782
AUT-de-en Austria de 1,120 ESCO v1.1.0 en 33,813
BEL-fr-fr Belgium fr 328 ESCO v1.0.3 fr 15,227
BEL-fr-en Belgium fr 328 ESCO v1.0.3 en 33,609
BEL-nl-nl Belgium nl 328 ESCO v1.0.3 nl 24,070
BEL-nl-en Belgium nl 328 ESCO v1.0.3 en 33,609
BGR-bg-bg Bulgaria bg 4,438 ESCO v1.0.3 bg 21,082
BGR-bg-en Bulgaria bg 4,438 ESCO v1.0.3 en 33,609
CZE-cs-cs Czechia cs 988 ESCO v1.0.9 cs 13,333
CZE-cs-en Czechia cs 988 ESCO v1.0.9 en 33,583
DEU-de-de Germany de 1,779 ESCO v1.0.3 de 19,135
DEU-de-en Germany de 1,779 ESCO v1.0.3 en 33,609
DNK-da-da Denmark da 734 ESCO v1.0.8 da 10,410
DNK-da-en Denmark da 734 ESCO v1.0.8 en 33,583
ESP-es-es Spain es 1,580 ESCO v1.0.8 es 16,502
ESP-es-en Spain es 1,580 ESCO v1.0.8 en 33,583
EST-et-et Estonia et 1,068 ESCO v1.0.8 et 4,956
EST-et-en Estonia et 1,068 ESCO v1.0.8 en 33,583
FRA-fr-fr France fr 1,435 ESCO v1.0.9 fr 15,217
FRA-fr-en France fr 1,435 ESCO v1.0.9 en 33,583
HRV-hr-hr Croatia hr 2,347 ESCO v1.0.3 hr 17,390
HRV-hr-en Croatia hr 2,347 ESCO v1.0.3 en 33,609
HUN-hu-hu Hungary hu 362 ESCO v1.0.8 hu 16,923
HUN-hu-en Hungary hu 362 ESCO v1.0.8 en 33,583
ITA-it-it Italy it 362 ESCO v1.0.8 it 16,199
ITA-it-en Italy it 362 ESCO v1.0.8 en 33,583
LTU-lt-lt Lithuania lt 3,849 ESCO v1.0.8 lt 17,824
LTU-lt-en Lithuania lt 3,849 ESCO v1.0.8 en 33,583
LVA-lv-lv Latvia lv 3,251 ESCO v1.0.8 lv 9,733
LVA-lv-en Latvia lv 3,251 ESCO v1.0.8 en 33,583
NLD-nl-nl Netherlands nl 2,605 ESCO v1.0.3 nl 24,070
NLD-nl-en Netherlands nl 2,605 ESCO v1.0.3 en 33,609
NOR-no-no Norway no 96 ESCO v1.0.8 no 7,821
NOR-no-en Norway no 96 ESCO v1.0.8 en 33,583
POL-pl-pl Poland pl 1,937 ESCO v1.0.3 pl 8,879
POL-pl-en Poland pl 1,937 ESCO v1.0.3 en 33,609
PRT-pt-pt Portugal pt 379 ESCO v1.0.3 pt 11,671
PRT-pt-en Portugal pt 379 ESCO v1.0.3 en 33,609
ROU-ro-ro Romania ro 3,273 ESCO v1.0.8 ro 14,833
ROU-ro-en Romania ro 3,273 ESCO v1.0.8 en 33,583
SVK-sk-sk Slovakia sk 2,040 ESCO v1.0.8 sk 12,899
SVK-sk-en Slovakia sk 2,040 ESCO v1.0.8 en 33,583
SVN-sl-sl Slovenia sl 3,222 ESCO v1.0.8 sl 15,487
SVN-sl-en Slovenia sl 3,222 ESCO v1.0.8 en 33,583
SWE-sv-sv Sweden sv 2,883 ESCO v1.1.1 sv 7,506
SWE-sv-en Sweden sv 2,883 ESCO v1.1.1 en 33,802

consist of relevancy pairs, where the set of corpus ele-
ments that correspond to the correct occupation entity
for a particular query are marked as relevant, while all
other corpus elements are irrelevant.

To illustrate this with an example, given the national
terminology of France, we use the corresponding cross-
walk to build two datasets: the monolingual dataset,

where both the queries and the corpus elements are in
French, and a cross-lingual dataset, where the queries
are in French but the corpus elements are in English. We
name these datasets FRA-fr-fr and FRA-fr-en, respec-
tively. In Table 1 we list all the datasets in the bench-
mark, with information about the languages and number
of elements in their query and corpus element sets. For
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Figure 1: Histogram of minimum (normalized) edit distances between each query and the closest relevant corpus element for
a selection of monolingual tasks in MELO.

further detail on the construction and composition of
these datasets, as well as example queries and relevant
corpus elements, please refer to Appendix A.

The benchmark is intended to represent realistic use
cases, such as linking mentions into a taxonomy, en-
riching a custom taxonomy with new synonyms for the
existing concepts, or aligning two taxonomies. It is also
intended to study the cross-lingual and multilingual ca-
pabilities of proposed systems. Using extra information
for solving this task, such as context for the mentions or
descriptions and examples for the taxonomy concepts, is
out of the scope of this work but represents an interest-
ing line of future research that can take advantage of the
MELO Benchmark.

To assess the lexical overlap between the surface forms
in any national terminology and ESCO, we use the mono-
lingual tasks, and measure the normalized edit distance
between each query and the closest relevant corpus ele-
ment. In Figure 1 we show a histogram with the distri-
bution of such distances in a selection of tasks.

The lexical overlap is considerable in some cases, like
with the Danish terminology. In the histogram, a big
concentration of examples in the left-most bin implies
that many queries are lexically very close to their rele-
vant corpus elements. This, in principle, would make
these tasks easier to solve using simple lexical scoring
functions. In Appendix A we explain the procedure used
to compute the lexical distances and we also present the
same analysis for every task in the benchmark.

5. Experiments
To demonstrate the MELO Benchmark in use, we study
the performance of several models when evaluated on the
tasks we defined above. We explore both simple lexical
baselines and advanced deep learning models using a
bi-encoder, zero-shot setting.
Lexical Baselines. We evaluate the following baselines:
edit-distance, word-level TF-IDF, word-level TF-IDF on
lemmas, char-level TF-IDF, char-level TF-IDF on lem-
mas, BM25, and BM25 on lemmas. These models rely on
surface-level text features.

Semantic Baselines. Additionally, we provide re-
sults for zero-shot evaluations using state-of-the-art deep
learning models employed as symmetric bi-encoders. Un-
der this setup, we use a sentence encoder to obtain a
fixed-size representation for each surface form, and the
score for a query and each corpus element is computed as
the cosine similarity of their corresponding representa-
tions. This allows the system to capture deeper semantic
relationships.

We experiment with the following pre-trained models
in a zero-shot setup, without fine-tuning or in-context
examples: ESCOXLM-R [10], mUSE-CNN [36], a mul-
tilingual variant of MPNet [37], BGE-M3 [38], GIST-
Embedding [39], Multilingual E5 [40], E5 [41, 42], and
the model text-embedding-3-large from OpenAI4. This
selection of models represents a spectrum of trade-offs
between performance and model complexity. We refer
the reader to Appendix B and Table 3 for further details
on the models and the inference procedure.

As described in Section 3, the goal of each task is to find
the relevant concept in the taxonomy for the given query.
Therefore, obtaining at least one surface form associated
with the relevant concept at the top of the ranking is
sufficient to achieve this goal. With that in mind, we use
mean reciprocal rank (MRR) and top-𝑘 accuracy (A@𝑘)
as evaluation metrics.

Due to space constraints, in Table 2 we present results
in terms of mean reciprocal rank (MRR) for a selected sub-
set of tasks, while the complete set of results is provided
in Table 5 and Table 6 in Appendix C.

In most monolingual datasets, the top-performing lex-
ical baselines achieved MRR values ranging from 30%
to 55%. Notably, in the French5 and Danish datasets,
these baselines performed extraordinarily well in large
part due to substantial lexical overlap, as indicated by
the left-skewed distributions in Figure 4. In contrast, the
Lithuanian, Norwegian, and Romanian datasets exhibited
lower performance. Char-based TF-IDF variants deliver
the highest performance among this group of baselines.

In a zero-shot setup, ESCOXLM-R performs poorly,

4https://openai.com/index/new-embedding-models-and-api-updates
5Results for every dataset are presented in Appendix C.
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Table 2
Mean reciprocal rank (MRR) for each model, evaluated in the monolingual and the cross-lingual versions of a selection of
tasks in MELO. † USA-en-xx is a multilingual dataset, with corpus elements that also cover the language of the query.

Model
USA DEU ESP NLD DNK

en-en en-xx † de-de de-en es-es es-en nl-nl nl-en da-da da-en
Edit Distance 0.4858 0.4889 0.4392 0.0832 0.3297 0.0545 0.4275 0.0952 0.5650 0.1596
Word TF-IDF 0.3250 0.3207 0.4763 0.0388 0.2411 0.0127 0.4714 0.0460 0.5187 0.0398
Word TF-IDF (lemmas) 0.6056 0.5999 0.4666 0.0391 0.4318 0.0307 0.4674 0.0435 0.5179 0.0404
Char TF-IDF 0.5800 0.5764 0.5442 0.1301 0.4376 0.1238 0.4862 0.1281 0.5809 0.1576
Char TF-IDF (lemmas) 0.5957 0.5913 0.5474 0.1278 0.4697 0.1347 0.4811 0.1321 0.5801 0.1551
BM25 0.2936 0.2814 0.3377 0.0050 0.1916 0.0073 0.4433 0.0338 0.4987 0.0296
BM25 (lemmas) 0.6004 0.5978 0.4473 0.0198 0.4367 0.0275 0.4320 0.0393 0.5125 0.0334
ESCOXLM-R 0.3450 0.3426 0.4087 0.1002 0.2476 0.0854 0.3184 0.0829 0.3631 0.1095
mUSE-CNN 0.5532 0.5317 0.5606 0.3138 0.4176 0.3217 0.4255 0.2666 0.5026 0.1680
Paraph-mMPNet 0.5876 0.5822 0.4691 0.0916 0.3417 0.0899 0.3831 0.0955 0.4602 0.1148
BGE-M3 0.6226 0.6301 0.6083 0.3344 0.4927 0.3084 0.5045 0.3033 0.5839 0.3037
GIST-Embedding 0.6431 0.6464 0.5363 0.1325 0.3574 0.1534 0.4487 0.1316 0.5608 0.1348
mE5 0.6563 0.6588 0.6122 0.3858 0.5021 0.3480 0.5059 0.3246 0.5983 0.3325
E5 0.6735 0.6777 0.6639 0.5073 0.5557 0.4628 0.5650 0.4133 0.6178 0.4053
OpenAI 0.6842 0.6872 0.6778 0.5518 0.5371 0.4859 0.5723 0.4509 0.6173 0.4506

even falling behind simple lexical baselines across both
monolingual and cross-lingual datasets. This result is
consistent with previous research that has shown that
encoders trained with masked language modeling (MLM)
objectives often struggle to produce effective sentence
representations when directly evaluated as sentence en-
coders [43]. In contrast, the other bi-encoders evaluated
in this study were specifically optimized for generating
useful sentence embeddings, which explains their supe-
rior performance in these tasks.

The mUSE-CNNmodel demonstrates fair performance
on most monolingual tasks for languages included in
its pre-training, especially when considering its rela-
tively small model size and architecture type (see Table 3).
However, as anticipated, its performance drops signifi-
cantly for languages that were not included during its
pre-training. Furthermore, its performance falls below
the lexical baselines in almost all datasets. This can be
observed in Figure 2b.

MPNet exhibits poor performance across all monolin-
gual datasets, a surprising result given its larger model
size, architecture type, and the fact that it was pre-trained
in all the languages used in this experiment. Despite
these advantages, it is generally outperformed by the
smaller mUSE-CNN model, with the notable exception
of the English datasets.

BGE-M3 and Multilingual E5 have similar character-
istics, as described in Table 3, and both deliver strong
performance across most monolingual tasks. In these
cases, they generally outperform all lexical baselines and
smaller bi-encoders. However, in the English datasets,
Multilingual E5 outperforms BGE-M3.

GIST-Embedding demonstrates strong performance
in English, outperforming many larger models. It also

achieves reasonable results in most other languages,
which is surprising considering its primary training was
focused on English.

E5, a significantly larger Decoder-only model, out-
performs the previously mentioned models across most
tasks. This is also surprising since E5 was mainly trained
in English. Finally, although limited details are avail-
able publicly about OpenAI’s text-embedding-3-large
model, its performance is generally on par with or even
surpasses that of E5. OpenAI’s model delivers the highest
overall performance among all the models evaluated in
our experiments.

The performance of the models in each monolingual
dataset is correlatedwith the lexical overlap in the dataset,
as measured by the median of the distributions presented
in Figure 4. As expected, lexical baselines exhibit a partic-
ularly strong correlation, with Spearman’s coefficients of
-0.74 for Char TF-IDF and -0.80 for Edit Distance. Inter-
estingly, bi-encoders also demonstrate a moderate corre-
lation, such as mE5 (-0.65) and OpenAI (-0.62). In Figure 2
we visualize this correlation, as well as the correlation
between the lexical overlap and the difference in perfor-
mance between some bi-encoders and a lexical baseline6.
We observe that, the less lexical overlap in the dataset, the
more the OpenAI model outperforms the lexical baseline.

Comparing the results of datasets USA-en-en and USA-
en-xx, which share the same queries, we observe that
most methods significantly enhance their performance
when the corpus elements visible to the system are ex-
panded to include multiple languages, surpassing their
performance in the monolingual task. An implication for
this is that, when linking mentions into a multilingual
taxonomy, the surface forms in other languages are valu-

6Same figure is displayed in full size in Appendix C
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Figure 2: Correlation between model performance and the
median of the minimum edit distance between queries and
relevant corpus elements in monolingual datasets.

able even if the taxonomy includes entity names in the
language of the query.

As expected, the performance drop when moving from
monolingual to cross-lingual datasets (excluding O*NET)
is significantly more pronounced for the lexical baselines
compared to the bi-encoders. The capacity for (zero-shot)
cross-lingual EL of occupations varies for different mod-
els: ESCOXLM-R, MPNet, and GIST-Embedding exhibit
very low cross-lingual performance; mUSE-CNN, BGE-
M3, and Multilingual E5 demonstrate fair cross-lingual
performance; while E5 and OpenAI achieve the highest
cross-lingual performance.

Since the techniques we experiment with —lexical scor-
ers and bi-encoders— are commonly used for candidate
generation in the first stage of EL [1, 2], it is interesting
to measure the top-𝑘 accuracy (A@𝑘) for different val-
ues of 𝑘 to assess how well such techniques recover the
first relevant item. Figure 3 presents these results for
the same subset of tasks for the following systems: Edit
Distance, Char-level TF-IDF, mUSE-CNN, and OpenAI.
The complete set of A@𝑘 is available in Appendix C, in
Figure 6 and Figure 7. The results observed for top-𝑘
accuracy are consistent with those for mean reciprocal
rank (MRR), particularly in terms of the relative ranking
and comparative performance of the models.

6. Related Work
There has been significant research interest in systems
that normalize HR information into ESCO and other tax-
onomies.

Decorte et al. [14] explore the extraction of ESCO skills
from segmented job descriptions. They approach this
problem as a massive multi-label classification task, and
present a human-annotated evaluation set for this task.
More recently, Decorte et al. [17] approach the same prob-
lem from an EL perspective. They use a large language
model (LLM) to produce synthetic annotations and train
a bi-encoder to extract ESCO skills from job description
segments. Finally, Zhang et al. [11] apply and compare
two supervised EL methods for solving the same task:
BLINK [2] and GENRE [44]. In contrast to these other
studies, our work focuses on occupations instead of skills,
explores cross-lingual andmultilingual scenarios, and the
task as we formulate it does not use context for linking
the query mentions.

There has also been a substantial amount of research
focused on occupations. Decorte et al. [20] developed
an unsupervised approach to fine-tune BERT [45] to en-
code the semantics of occupation names. Furthermore,
they create a dataset for the normalization of free-form
English occupation names into ESCO and they use it
to evaluate their model. It has been reported that this
dataset contains ambiguous input queries [20] as well as
some mislabeled elements [46]. Closely related works by
Zbib et al. [47] and by Bocharova et al. [48] propose al-
ternative unsupervised representation learning schemes.
They both release evaluation datasets, the former for
occupation name ranking, and the latter for EL of unnor-
malized occupation names into ESCO.

Lake [16] studies the application of bi-encoders and
cross-encoders to EL of occupations to a custom taxon-
omy. Yamashita et al. [21] work on a normalization task
for occupations, which closely resembles our formula-
tion of EL. They create a non-public dataset by collect-
ing a large number of unnormalized occupation names
and then automatically mapping them to ESCO occu-
pations via exact match after removing proper nouns.
Vrolijk et al. [22] build a synthetic dataset for zero-shot
evaluation and fine-tuning of several language models us-
ing information from ESCO that includes the synonyms
for each entity name, the relationship between entities,
and their definitions. In particular, they use the set of
name synonyms for each ESCO occupation to pose a
binary relevance classification problem, where positive
pairs involve two names belonging to the same synonym
set.

Two important use cases of the EL task under study
are enriching and aligning taxonomies. In order to main-
tain up-to-date but well-curated taxonomies, it is com-
mon to automatically identify new candidate concepts
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Figure 3: Top-𝑘 accuracy (A@k) for a selection of models in the MELO Benchmark tasks corresponding to O*NET, Germany,
Spain, the Netherlands, and Denmark.

to be included, and to use human annotators to validate
their inclusion. Similarly, when aligning two taxonomies
—i.e. building a crosswalk—, it is common to use auto-
matic systems to propose and explore candidate matches
between the concepts in each taxonomy.

Giabelli [19] and colleagues have worked on several
approaches for enriching [49] and aligning [18, 50] tax-
onomies using word embeddings to model concepts via
their names, together with structural information about
the taxonomy. All thesemethods automatically score can-
didates for inclusion or mapping, and can be used within
a human-in-the-loop framework for further validation.

During the creation of the crosswalk between O*NET
and ESCO, the teams responsible for maintaining both
taxonomies worked together to ensure a high-quality
mapping [33]. Interestingly, they report employing
a human-in-the-loop methodology where a fine-tuned
BERT model [45] is used as a bi-encoder to rank the
ESCO occupations for each O*NET occupation. They
explore different methods for encoding each, leveraging
occupation names (and synonyms) as well.

More recently, the ESCO team presented an analy-
sis [46] on a task that is very similar to the one we present
here. They fine-tune a XLM-RoBERTa model [51] on
HR-related data, including the textual information from
ESCO, but with no supervision signal for any specific EL
task. They then use this model as a bi-encoder to suggest
ESCO occupations for elements taken from the national
terminologies of Latvia, Spain, Sweden, and Italy, as well
as from O*NET. Using the respective crosswalks, they
evaluate this as an EL task. They explore monolingual
and cross-lingual (to English) modalities. A key differ-
ence between this work and ours is that they consider
any SKOS relationship as a legitimate annotation, while
we only use exact and narrow matches. We also filter

out semantically ambiguous queries for which experts
determined that they should be related as an exact match
to more than one ESCO concept. For those reasons, their
results are not comparable to those we present in this
work.

7. Conclusion
We have introduced the MELO Benchmark, a suite of 48
datasets for multilingual entity linking of occupations in
21 languages. We experimented with several out-of-the-
box lexical and semantic baselines, demonstrating that
there is still significant room for improvement. Our aim
is that MELO will serve as a valuable resource for the re-
search community, providing a standardized benchmark
for assessing progress in multilingual EL within the HR
domain, and fostering innovation and the development
of new methodologies in this important area of research.

In future work, several research directions could be
explored. First, the current evaluation scheme can be ex-
tended to incorporate NIL prediction or prediction using
entity descriptions rather than relying solely on entity
names, with the presented source code being easily adapt-
able for such modifications. Second, domain-adapting
or fine-tuning encoders specifically for this task, in a
manner similar to ESCOXLM-R but optimized for seman-
tic text similarity, presents another possible direction.
Third, exploring advanced deep learning techniques be-
yond bi-encoders, such as cross-encoders combined with
re-ranking stages, could enhance model performance.
Finally, investigating the meta-learning paradigm by di-
viding MELO tasks into meta-training and meta-testing
tasks, and applying meta-learning context to solve the
meta-testing tasks, exploiting multi-lingual transfer capa-
bilities of modern deep-learning models, offers another



interesting direction for future work.
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A. Details on the Datasets
We release the source code used to build the datasets7,
providing researchers with a tool to easily generate new
datasets by combining different sets of languages for
query and corpus elements. Using this code, new instan-
tiations of the task can be derived from the input data by
defining custom language combinations. For example, it
is possible to use the Italian national terminology to set
up an Italian-to-Greek cross-lingual task, or even com-
bine the query sets of several national classifications and
leverage all languages in ESCO to create a more complex
multilingual task.

The input data consists of files with the multilingual
ESCO Occupations taxonomy (one for each relevant ver-
sion) and files containing the queries in each national
terminology, which are mapped to the ESCO concept ID
of the relevant occupation. To create a dataset, the user
can select a national terminology and a set of languages
for the corpus (any subset of the languages supported by
ESCO).

In Table 4 we present example queries and their rele-
vant corpus elements, sampled from the NLD-nl-nl, PRT-
pt-pt, and PRT-pt-en datasets.

Finally, we analyze the lexical overlap between the na-
tional classifications and ESCO. In Figure 4, we present a
histogram showing the normalized edit distance between
queries and their closest relevant corpus element, for all
the tasks in MELO.

To compute the distances, we first lowercase the sur-
face forms of both the query and the corpus element,
and we use the method ratio from the Python package
rapidfuzz8. This is a measure of the normalized edit
distance between the two strings. In the histograms, for
each query, we compute the distance for all its relevant
corpus elements and report the minimum distance.

In the histograms, the left-most bin represents the frac-
tion of queries for which the closest relevant element is
either identical or very similar. The Danish national ter-
minology has the highest concentration of such cases. To
a lesser extent, this is also true for Hungarian, Estonian,
and Polish.

Excluding those lexically trivial cases, the more the
distribution is skewed to the left, the easier the task. For
example, comparing the Belgian (in the French language)
and the French tasks, the queries from the French termi-
nology show greater lexical overlap with their relevant
corpus elements.

In Appendix C, we use this analysis to compare the
performance of lexical baselines across different mono-
lingual tasks.

7https://github.com/Avature/melo-benchmark
8https://rapidfuzz.github.io/RapidFuzz/Usage/fuzz.html
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Figure 4: Histogram of minimum (normalized) edit distances between each query and the closest relevant corpus element for
each monolingual task in MELO.



Table 3
Characteristics of models used in bi-encoder experiments. Encoder-only and decoder-only architectures refer to Transformers.
Model size is given in millions of parameters. Some specifications are unknown for the OpenAI model. The Language Support
column indicates the extent to which the languages involved in the benchmark are supported by each model. † The mUSE-CNN
model supports only English, German, French, Spanish, Dutch, Portuguese, Italian, and Polish. ‡ Although GIST-Embedding
and E5 are reported to be trained primarily in English, the pre-training of these models did involve examples in other languages
as well.

Model Architecture Model Size Output Dims Language Support
ESCOXLM-R Encoder-only Transformer 561 1024 Complete
mUSE-CNN CNN 69 512 Partial †

Paraph-mMPNet Encoder-only Transformer 278 768 Complete
BGE-M3 Encoder-only Transformer 560 1024 Complete
GIST-Embedding Encoder-only Transformer 109 768 Mainly English ‡

mE5 Encoder-only Transformer 560 1024 Complete
E5 Decoder-only Transformer 7111 4096 Mainly English ‡

OpenAI Unknown Unknown 3072 Unknown

B. Details on the Models
Here, we provide further details about the models ex-
plored in this work.

Regarding the lexical baselines, we always apply a
simple preprocessing in which we lowercase the input
strings and, for all languages except Bulgarian, also per-
form ASCII normalization. For the edit distance baseline,
we use rapidfuzz as described above. For the TF-IDF
baselines, we use the scikit-learn9 Python package,
while for the BM5 variants, we use the Okapi BM25 im-
plementation from rank-bm2510.

For the baseline variants that involve lemmatization,
we use spacy11 models whenever available. However,
spacy models were not available for the following lan-
guages: Bulgarian, Czech, Estonian, Hungarian, Latvian,
and Slovak. Lemmatization is applied before ASCII nor-
malization.

In the case of bi-encoders, we experiment with sev-
eral deep learning sentence encoders that have demon-
strated strong performance in other semantic text simi-
larity tasks.

The first model is ESCOXLM-R, proposed by
Zhang et al. [10], which is based on XLM-RoBERTa. We
use the PyTorch implementation and the pre-trained
weights that are available on HuggingFace with the
model name jjzha/esco-xlm-roberta-large. The base
model was pre-trained on data in 88 languages, including
all those involved in our datasets, and the fine-tuning
by Zhang and colleagues involved learning objectives
that leverage information in ESCO. Although it is usual
to experiment with the XLM-RoBERTa family of models
only after fine-tuning, in our experiment we use it out-
of-the-box in a zero-shot setup. During inference, the
9https://scikit-learn.org/stable/modules/generated/sklearn.feature_
extraction.text.TfidfVectorizer.html

10https://pypi.org/project/rank-bm25/
11https://spacy.io/api/lemmatizer

input to the model is the surface form of the query or the
corpus element, with no preprocessing.

We also present results for the Multilingual Univer-
sal Sentence Encoder (mUSE-CNN) model variant with
a CNN architecture, proposed by Cer et al. [52, 36]. In
our experiments, we use the TensorFlow implementa-
tion and the pre-trained weights available on Tensor-
Flow Hub with the handle google/universal-sentence-
encoder-multilingual/3. This model was pre-trained
on data in Arabic, Chinese, English, French, German, Ital-
ian, Japanese, Korean, Dutch, Polish, Portuguese, Spanish,
Thai, Turkish, and Russian. (Note that, during training,
mUSE-CNN has not seen text for languages such as Bul-
garian, Czech, or Danish.) During inference, the input to
the model is the surface form of the query or the corpus
element without any preprocessing or enclosing prompt
template.

Other open-source models we experiment with are im-
plemented in PyTorch within the HuggingFace package
sentence-transformers [53]. These models are the
following: a multilingual model based on MPNet [37]
that was pre-trained on 50 languages, including all of
MELO languages12; the BGE-M3 model [38], which sup-
ports more than 100 languages, including also all MELO
languages13; GIST Embedding [39], which is a model
reported to be primarily trained in English14; Multilin-
gual E5 [40], which was pre-trained on 94 languages,
including all of MELO languages15; and E5 [41, 42] pre-
trained on many languages but reported to perform best
on English-language input16.

Finally, we also experiment with the text-embedding-

12https://huggingface.co/sentence-transformers/
paraphrase-multilingual-mpnet-base-v2

13https://huggingface.co/BAAI/bge-m3
14https://huggingface.co/avsolatorio/GIST-Embedding-v0
15https://huggingface.co/intfloat/multilingual-e5-large
16https://huggingface.co/intfloat/e5-mistral-7b-instruct
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3-large model from OpenAI17, which is reported to be
state-of-the-art for many semantic text similarity tasks.

For HuggingFace and OpenAI models, during infer-
ence, we wrap the input text (the surface form of the
query or corpus element) with the following prompt tem-
plate:

The candidate’s job title is “{{surf_form}}”.
What skills are likely required for this job?

where {{surf_form}} is replaced with the surface form
of the element that is being encoded.

This decision was informed by preliminary experi-
ments in which we evaluated various models with differ-
ent wrapping prompt templates, including no template
(as with ESCOXLM-R and mUSE-CNN). We speculate
that such prompts are particularly beneficial for LLM-
based encoders, as they may better capture the semantics
of the occupation names we aim to rank.

Although we also experimented with prompts in the
same language as each query, this did not improve per-
formance. Consistently using a single prompt ensures a
language-agnostic and symmetric bi-encoder approach.

C. Full Results
This Section presents the full set of experimental results.
Table 5 and Table 6 include the mean reciprocal rank
(MRR) for each model across all tasks in MELO.

Although not included with the main results, we also
evaluated a random baseline for each dataset, where the
score 𝑠(𝑞, 𝑐𝑖) for any query and any corpus element is
drawn from a uniform distribution. The performance of
this baseline varies depending on the number of corpus
elements and the distribution of relevant elements per
query, but in general, its MRR is close to 0.020.

Additionally, Figure 5 shows scatterplots illustrating
the correlation between model performance and the me-
dian of the lexical overlap index described in Appendix A:
the minimum normalized edit distance per query.

Finally, in Figure 6 and in Figure 7 we show the top-𝑘
accuracy (A@𝑘) for a selection of models in every task
in MELO.

17https://openai.com/index/new-embedding-models-and-api-updates
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Figure 5: Correlation between model performance and the median of the minimum edit distance between queries and relevant
corpus elements in monolingual datasets.



Table 4
Example queries and their relevant corpus elements for various datasets in MELO. Surface forms in Dutch are presented in red,
while those in Portuguese are in blue.

Dataset Name Query Relevant Corpus Elements

NLD-nl-nl
Kredietbeoordelaar kredietanalist

kredietadviseur
analist kredieten en risico’s

Woonbegeleider gezinsvervangend huis, woon-
centrum

medewerker verzorgingshuis
medewerker verzorgingstehuis
medewerkster verzorgingscentrum
medewerkster verzorgingstehuis
medewerkster verzorgingshuis
medewerker verzorgingscentrum

PR-adviseur lobbyist
lobbyiste

PRT-pt-pt
Guia intérprete Guias-intérpretes
Fumigador e outros controladores, de pragas e
ervas daninhas

Pulverizador de pesticidas/Pulverizadora de pesticidas
Pulverizador de pesticidas
Pulverizadora de pesticidas

Empregado de serviços de apoio à produção Coordenador de montagem de máquinas/Coordenadora
de montagem de máquinas
Coordenador de montagem de máquinas
Coordenadora de montagem de máquinas

PRT-pt-en
Guia intérprete Travel guides
Fumigador e outros controladores, de pragas e
ervas daninhas

pesticides sprayer
lawn care chemical applicator
spray technician
pesticides applicator
trees sprayer
sprayer of pesticides

Empregado de serviços de apoio à produção machinery assembly coordinator
production line coordinator
manufacturing co-ordinator
assembly line coordinator
machinery manufacturing co-ordinator
machinery production inspector
machinery production co-ordinator
assembly line co-ordinator
machinery assembly co-ordinator
machinery manufacturing manager
production line co-ordinator



Table 5
Mean reciprocal rank (MRR) for every model, evaluated in the monolingual and the cross-lingual versions of the MELO tasks.

Model
USA AUT BEL BEL BGR

en-en en-xx de-de de-en fr-fr fr-en nl-nl nl-en bg-bg bg-en
Edit Distance 0.4858 0.4889 0.4695 0.1337 0.4053 0.1072 0.4936 0.1456 0.2651 0.0007
Word TF-IDF 0.3250 0.3207 0.4104 0.0319 0.4589 0.0735 0.4914 0.0618 0.2740 0.0033
Word TF-IDF (lemmas) 0.6056 0.5999 0.4115 0.0288 0.4677 0.0947 0.4907 0.0593 - -
Char TF-IDF 0.5800 0.5764 0.5088 0.1008 0.4520 0.1827 0.5529 0.1970 0.2925 0.0006
Char TF-IDF (lemmas) 0.5957 0.5913 0.5096 0.1269 0.4597 0.1781 0.5474 0.1750 - -
BM25 0.2936 0.2814 0.0252 0.0041 0.4130 0.0583 0.4553 0.0398 0.2581 0.0033
BM25 (lemmas) 0.6004 0.5978 0.3808 0.0186 0.4651 0.0723 0.4598 0.0389 - -
ESCOXLM-R 0.3450 0.3426 0.4150 0.0767 0.2575 0.0537 0.3720 0.1084 0.2215 0.0269
mUSE-CNN 0.5532 0.5317 0.5024 0.2656 0.4324 0.3213 0.4638 0.3148 0.2514 0.1044
Paraph-mMPNet 0.5876 0.5822 0.3726 0.0852 0.3824 0.1459 0.4283 0.1498 0.2146 0.0167
BGE-M3 0.6226 0.6301 0.5330 0.2819 0.5225 0.4005 0.5709 0.3529 0.3192 0.1825
GIST-Embedding 0.6431 0.6464 0.4819 0.0947 0.4803 0.1848 0.5113 0.1706 0.2700 0.0033
mE5 0.6563 0.6588 0.5334 0.3092 0.5407 0.4266 0.5683 0.3851 0.3106 0.1870
E5 0.6735 0.6777 0.5612 0.4143 0.5606 0.5380 0.6133 0.4991 0.3406 0.2371
OpenAI 0.6842 0.6872 0.5628 0.4304 0.5775 0.5736 0.6255 0.5698 0.3343 0.2367

(a) Results for tasks: O*NET, Austria, Belgium (French), Belgium (Dutch), and Bulgaria.

Model
CZE DEU DNK ESP EST

cs-cs cs-en de-de de-en da-da da-en es-es es-en et-et et-en
Edit Distance 0.3215 0.0524 0.4392 0.0832 0.5650 0.1596 0.3297 0.0545 0.4121 0.1146
Word TF-IDF 0.2410 0.0023 0.4763 0.0388 0.5187 0.0398 0.2411 0.0127 0.3675 0.0097
Word TF-IDF (lemmas) - - 0.4666 0.0391 0.5179 0.0404 0.4318 0.0307 - -
Char TF-IDF 0.4043 0.0843 0.5442 0.1301 0.5809 0.1576 0.4376 0.1238 0.4838 0.1095
Char TF-IDF (lemmas) - - 0.5474 0.1278 0.5801 0.1551 0.4697 0.1347 - -
BM25 0.2189 0.0023 0.3377 0.0050 0.4987 0.0296 0.1916 0.0073 0.2982 0.0055
BM25 (lemmas) - - 0.4473 0.0198 0.5125 0.0334 0.4367 0.0275 - -
ESCOXLM-R 0.1835 0.0195 0.4087 0.1002 0.3631 0.1095 0.2476 0.0854 0.2995 0.0374
mUSE-CNN 0.2512 0.0914 0.5606 0.3138 0.5026 0.1680 0.4176 0.3217 0.3847 0.0811
Paraph-mMPNet 0.2418 0.0464 0.4691 0.0916 0.4602 0.1148 0.3417 0.0899 0.3505 0.0635
BGE-M3 0.4285 0.3021 0.6083 0.3344 0.5839 0.3037 0.4927 0.3084 0.4726 0.2882
GIST-Embedding 0.3383 0.0854 0.5363 0.1325 0.5608 0.1348 0.3574 0.1534 0.3996 0.0597
mE5 0.4498 0.3406 0.6122 0.3858 0.5983 0.3325 0.5021 0.3480 0.4531 0.2757
E5 0.5145 0.4148 0.6639 0.5073 0.6178 0.4053 0.5557 0.4628 0.4913 0.2465
OpenAI 0.5141 0.4356 0.6778 0.5518 0.6173 0.4506 0.5371 0.4859 0.4969 0.3915

(b) Results for tasks: Czechia, Germany, Denmark, Spain, and Estonia.

Model
FRA HRV HUN ITA LTU

fr-fr fr-en hr-hr hr-en hu-hu hu-en it-it it-en lt-lt lt-en
Edit Distance 0.7726 0.0964 0.3791 0.0325 0.4037 0.0362 0.3919 0.1069 0.1766 0.0530
Word TF-IDF 0.7743 0.0646 0.4565 0.0058 0.3604 0.0035 0.1886 0.0164 0.1890 0.0033
Word TF-IDF (lemmas) 0.7824 0.0810 0.4416 0.0073 - - 0.4452 0.0142 0.1973 0.0036
Char TF-IDF 0.7956 0.1954 0.4588 0.0995 0.4249 0.0273 0.4290 0.1560 0.2054 0.0410
Char TF-IDF (lemmas) 0.7936 0.1890 0.4657 0.0936 - - 0.4800 0.1760 0.2118 0.0361
BM25 0.7514 0.0484 0.4050 0.0021 0.3247 0.0030 0.1609 0.0036 0.1874 0.0033
BM25 (lemmas) 0.8042 0.0707 0.4445 0.0075 - - 0.4425 0.0081 0.1984 0.0037
ESCOXLM-R 0.6603 0.1098 0.3128 0.0479 0.2952 0.0311 0.2686 0.1124 0.1381 0.0209
mUSE-CNN 0.7794 0.3681 0.3790 0.0769 0.3441 0.0324 0.3732 0.2861 0.1668 0.0521
Paraph-mMPNet 0.7660 0.1624 0.3678 0.0524 0.3198 0.0219 0.3580 0.0902 0.1747 0.0196
BGE-M3 0.8454 0.4171 0.4827 0.2473 0.4496 0.1878 0.4730 0.3271 0.2212 0.1310
GIST-Embedding 0.8047 0.2011 0.3968 0.0737 0.3901 0.0306 0.4242 0.1651 0.1876 0.0355
mE5 0.8427 0.4464 0.4734 0.2712 0.4327 0.2155 0.4825 0.3583 0.2258 0.1206
E5 0.8632 0.5760 0.5074 0.3516 0.4973 0.3372 0.5384 0.4459 0.2269 0.1121
OpenAI 0.8721 0.6160 0.4995 0.3795 0.4715 0.3455 0.5128 0.4573 0.2295 0.1754

(c) Results for tasks: France, Croatia, Hungary, Italy, and Lithuania.



Table 6
Mean reciprocal rank (MRR) for every model, evaluated in the monolingual and the cross-lingual versions of the MELO tasks.

Model
LVA NLD NOR POL PRT

lv-lv lv-en nl-nl nl-en no-no no-en pl-pl pl-en pt-pt pt-en
Edit Distance 0.3416 0.0900 0.4275 0.0952 0.2571 0.0472 0.4911 0.0637 0.5103 0.1119
Word TF-IDF 0.3802 0.0066 0.4714 0.0460 0.0453 0.0008 0.5630 0.0143 0.6051 0.0272
Word TF-IDF (lemmas) - - 0.4674 0.0435 0.1292 0.0009 0.5588 0.0216 0.5947 0.0266
Char TF-IDF 0.3845 0.0774 0.4862 0.1281 0.2876 0.0582 0.5596 0.1109 0.5855 0.1896
Char TF-IDF (lemmas) - - 0.4811 0.1321 0.3272 0.0472 0.5528 0.1115 0.5860 0.1904
BM25 0.3664 0.0054 0.4433 0.0338 0.0316 0.0002 0.5535 0.0085 0.5736 0.0236
BM25 (lemmas) - - 0.4320 0.0393 0.1307 0.0004 0.5482 0.0181 0.5886 0.0258
ESCOXLM-R 0.1569 0.0276 0.3184 0.0829 0.1101 0.0267 0.4063 0.0882 0.4846 0.1312
mUSE-CNN 0.1773 0.0357 0.4255 0.2666 0.1769 0.1109 0.5141 0.3258 0.5829 0.3363
Paraph-mMPNet 0.2718 0.0343 0.3831 0.0955 0.1485 0.0492 0.4582 0.0585 0.5362 0.0996
BGE-M3 0.3842 0.1922 0.5045 0.3033 0.2662 0.1984 0.5916 0.3542 0.5878 0.4124
GIST-Embedding 0.3450 0.0603 0.4487 0.1316 0.2427 0.0716 0.4859 0.1107 0.5330 0.2017
mE5 0.3839 0.1899 0.5059 0.3246 0.2558 0.2229 0.5836 0.3793 0.5834 0.4372
E5 0.4008 0.1716 0.5650 0.4133 0.2899 0.3512 0.6220 0.4844 0.6416 0.5336
OpenAI 0.4103 0.2418 0.5723 0.4509 0.2946 0.4358 0.6225 0.5085 0.6339 0.5413

(a) Results for tasks: Latvia, the Netherlands, Norway, Poland, and Portugal.

Model
ROU SVK SVN SWE

ro-ro ro-ro sk-sk sk-en sl-sl sl-en sv-it sv-en
Edit Distance 0.2436 0.0521 0.3321 0.0725 0.4145 0.0665 0.3254 0.0845
Word TF-IDF 0.2849 0.0261 0.3695 0.0156 0.4808 0.0083 0.2997 0.0187
Word TF-IDF (lemmas) 0.2768 0.0332 - - 0.4821 0.0133 0.3034 0.0191
Char TF-IDF 0.2969 0.1043 0.3961 0.1123 0.4814 0.0759 0.3848 0.0905
Char TF-IDF (lemmas) 0.3038 0.1054 - - 0.4850 0.0757 0.3904 0.0937
BM25 0.2687 0.0224 0.3477 0.0120 0.4645 0.0051 0.2421 0.0125
BM25 (lemmas) 0.2621 0.0300 - - 0.4862 0.0131 0.3002 0.0170
ESCOXLM-R 0.1458 0.0556 0.2295 0.0429 0.3179 0.0535 0.2111 0.0681
mUSE-CNN 0.2407 0.1171 0.3118 0.1040 0.3814 0.0836 0.2837 0.0948
Paraph-mMPNet 0.2649 0.1036 0.2799 0.0639 0.3593 0.0486 0.2662 0.0611
BGE-M3 0.3167 0.1946 0.4568 0.3127 0.4999 0.2848 0.3905 0.1905
GIST-Embedding 0.2852 0.1084 0.3491 0.1041 0.4223 0.0765 0.3265 0.0772
mE5 0.3176 0.2043 0.4632 0.3308 0.4897 0.2815 0.4001 0.2017
E5 0.3314 0.2308 0.5087 0.3604 0.5339 0.3912 0.4286 0.2605
OpenAI 0.3383 0.2572 0.5216 0.4122 0.5400 0.4092 0.4266 0.2909

(b) Results for tasks: Romania, Slovakia, Slovenia, and Sweden.
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(a) Results for tasks: O*NET, Austria, Belgium (fr), Belgium (nl), and Bulgaria.
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(b) Results for tasks: Czechia, Germany, Denmark, Spain, and Estonia.
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(c) Results for tasks: France, Croatia, Hungary, Italy, and Lithuania.

Figure 6: Top-𝑘 accuracy (A@k) for a selection of models in the MELO Benchmark tasks.
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(a) Results for tasks: Latvia, the Netherlands, Norway, Poland, and Portugal.
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(b) Results for tasks: Romania, Slovakia, Slovenia, and Sweden.

Figure 7: Top-𝑘 accuracy (A@k) for a selection of models in the MELO Benchmark tasks.
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