
Tackling Cold Start for Job Recommendation with
Heterogeneous Graphs
Eric Behar1,2,*, Julien Romero1, Amel Bouzeghoub1 and Katarzyna Wegrzyn-Wolska3

1Telecom SudParis, IPParis, SAMOVAR, Évry, France
2EasyPartner, France
3EFREI, Villejuif, France

Abstract
Recruiting changed drastically with the emergence of professional social networks that bring together many people and
companies. It is a chance as it helps to increase the adequacy between a position and a candidate. However, it creates new
challenges. First, the many possible combinations make it hard to find the perfect match. Second, it brings together talents
with many different skills and backgrounds that can be hard to understand for a recruiter. In particular, in computer science,
technologies tend to change quickly and can be obscure for non-technical employees. Therefore, using automatic tools is
crucial to guide the recruiting process. More specifically, a recommender system that matches candidates with open positions
can improve the overall satisfaction of all the agents in our system. Yet, job-matching data suffers from the cold start problem:
Once a person gets a position, they are very unlikely to obtain a new one soon. Thus, traditional techniques based on
collaborative filtering are very limited, and we must rely on the unique characteristics of each candidate.

In this paper, we propose a new recommender system based on a recruiting heterogeneous graph. This graph brings
together information about a job posting and the personal knowledge graph of the candidates. We tested our model on a new
real-world dataset, and we showed that it outperforms state-of-the-art methods.

Keywords
Recommender Systems, Recruiting, Cold Start

1. Introduction
According to a survey from 2017 [1], job seekers pre-
dominantly use online applications to find a job: 77% use
company websites, 58% use job posting sites, and 47%
use a professional social network. These numbers keep
increasing, and COVID-19 enforced the trend [2].

Dealing with the high number of candidates and job
postings is a challenge for all the actors in the recruiting
ecosystem. The applicants cannot browse through mil-
lions of open positions and need to be recommended the
most relevant ones for their skills and experience. Like-
wise, recruiters cannot look at all possible candidates on
a professional social network. Besides, it might be hard
for them to fully understand a technical market such as
IT (Information Technology), where skills are constantly
changing. They need to find quickly the best talents who

RecSys in HR’23: The 3rd Workshop on Recommender Systems for
Human Resources, in conjunction with the 17th ACM Conference on
Recommender Systems, September 18–22, 2023, Singapore, Singapore.
*Corresponding author.
$ eric.behar@telecom-sudparis.eu (E. Behar);
julien.romero@telecom-sudparis.eu (J. Romero);
amel.bouzeghoub@telecom-sudparis.eu (A. Bouzeghoub);
katarzyna.wegrzyn@efrei.fr (K. Wegrzyn-Wolska)
� https://julienromero.fr (J. Romero);
https://amel.wp.imtbs-tsp.eu/ (A. Bouzeghoub)
� 0000-0002-7382-9077 (J. Romero); 0000-0003-4890-9005
(A. Bouzeghoub); 0000-0002-9776-3842 (K. Wegrzyn-Wolska)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Data Scientist

Matched

Has skill
Has skill

Wants salary

Requires skill

Proposes salary

Python

Subskill

Requires skill

Subskill

Database

PostgreSQLMySQL

Lives in Work in

Paris Berlin

Figure 1: Example of a Recruiting Graph

are most likely to join the company. The process is cru-
cial as it can become costly for the company ($4,129 on
average [3]).

Therefore, many recruiting companies power their
websites with recommender systems that help to find the
perfect match. However, the recruiting domain differs
from traditional domains like movie or book recommen-
dations. The main difference comes from the sparsity of

mailto:eric.behar@telecom-sudparis.eu
mailto:julien.romero@telecom-sudparis.eu
mailto:amel.bouzeghoub@telecom-sudparis.eu
mailto:katarzyna.wegrzyn@efrei.fr
https://julienromero.fr
https://amel.wp.imtbs-tsp.eu/
https://orcid.org/0000-0002-7382-9077
https://orcid.org/0000-0003-4890-9005
https://orcid.org/0000-0002-9776-3842
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

training data: Once a candidate gets a job, they are un-
likely to get another one soon and on the same platform
(on average, a person holds 12.5 jobs in their lifetime [4]).
Conversely, we expect an individual to have seen many
series and movies, even on a single website. Therefore,
we cannot use traditional collaborative filtering tech-
niques and must rely on additional features.

One could only limit themselves to applications rather
than successful recruitments. This approach has the ad-
vantage of creating more training data but also produces
a lot of noise for the recruiters. Indeed, candidates usually
apply to many positions, especially online. According to
TalentWorks [5], one needs between 100 and 200 applica-
tions to get a job offer. From the recruiter’s point of view,
most of the applicants are irrelevant and, therefore, do
not constitute valuable positive training data for us. Of
course, if we had the feedback from the final recruiters,
it would bring a high value, but this is not the case in
existing datasets.

A further distinction in the recruiting domain is the
strong presence of relevant features. When one creates
an account on a streaming website, they do not fill in
much personal information. As the number of training
data is enough, straightforward collaborative filtering
algorithms can produce good results. It is different for
recruiting as a job or a candidate usually comes with
information that helps both parties find the perfect match.
For example, we often find the city, skills, experience, or
education of a person.

These differences make the problem of job recommen-
dation worth studying, especially in the case of cold start
recommendations with semantic information. However,
few datasets allow testing this configuration, so few pro-
posed systems solve this problem.

This paper studies this specific problem and makes the
following contributions:

• The creation of a dataset for job recommendation
with strong semantic information.

• The building of a recruiting graph connecting the
candidates with jobs.

• The implementation of a recommendation system
based on the created recruiting graph.

We will start by introducing the relevant state-of-the-
art methods in Section 2. Then, we will formally define
our problem in Section 3. Section 4 presents our solution,
and we give implementation details in Section 5. Finally,
we compare our approach with the state-of-the-art in
Section 6.

2. Previous Work
In this section, we introduce previous works. We divide
them into two parts. First, we study the existing datasets

and explain why they are too limiting or unsuitable in our
case. Then, we look at existing recommender systems,
particularly those that could work in a similar scenario.

2.1. Datasets
A crucial component of a recommender system is the
dataset used to train it. We want to compare them re-
garding our problem, which is job recommendation with
cold start and semantic information. We include in our
study the following datasets:

• MovieLens (ML) 100k, 1M, 10M [6] is the most
common dataset used for benchmarking in rec-
ommender systems. It can be found at multiple
scales depending on the use. It comprises data
about users (age, sex, occupation), movies (title,
release date, genres), and the users’ ratings that
may be associated with a comment. It is essential
to notice that the users’ information is unavail-
able for MovieLens 10M.

• Gowala [7] is a location-based social network-
ing website where users share their locations by
checking in. It contains pairs of user and location
identifiers associated with a timestamp and GPS
coordinates.

• Yelp [8] is a website allowing users to review busi-
nesses and other locations. The dataset contains
reviews and classic information about the busi-
ness, like the name, address, categories, or open-
ing hours.

• CareerBuilder’s job recommendation chal-
lenge [9] is a dataset published for an online data
science hackathon on Kaggle by CareerBuilder.
This dataset is the one that shares the most
similarity with our dataset.

• Our newly created dataset, JobTrackingHistory
(JTH). Further details are provided in Section 4.1.

We compare these datasets according to several met-
rics. The standard ones are the size, the number of users,
and the number of available features. Then, we intro-
duce additional metrics to describe the cold start problem
better. First, we have the density, which is the number
of user-item associations divided by the total number of
possible recommendations. This number highly corre-
lates to the number of items and users. Therefore, we
also include the average number of user and item associ-
ations. Finally, we report the number of users and items
without an association and whether or not the dataset
has a temporal dimension. The results are presented in
Table 1.

From this table, we can see that our dataset stands out
on two points. First, we have many users and items that

Name ML-100K ML-1M ML-10M Gowalla Yelp CareerBuilder JTH
Domain Entertainment Entertainment Entertainment Social Network Food Review Recruitment Recruitment
Size (approx) 27.3 MB 400 MB 300 MB 700 MB 8 GB 6.1 GB 2.7 GB
#users with reco 943 3,706 5,857 107,092 1,987,897 321,231 26,078
#items with reco 1,682 6,040 9,394 1,280,969 150,346 365,649 4,026
#features 10 10 10 3 27 12 37
Density 6.3% 4.47% 1.46% 0.0029% 0.0023% 0.0014% 0.04%
Avg #items/users 106 165.6 137.1 60.2 3.5 4.99 2.58
Avg #users/items 59.45 269.9 85.5 5 46.49 4.38 16.69
#users w/ reco 0 0 183 0 0 0 45,938
#item w/ reco 0 117 1287 0 0 0 771
Has time Yes Yes Yes Yes Yes Yes Yes

Table 1
Comparison of the Datasets For Recommender Systems

do not belong to any association. It creates a pool of
potential candidates and jobs that we could exploit. Sec-
ond, the number of relations a user engages in is below
all other datasets, which stresses the cold start problem.
Note here that we do not make a difference between a
candidate application, a recruiter selection, and a suc-
cessful recruitment (see Section 4.1). Compared to the
CareerBuilder dataset, our dataset is much smaller. How-
ever, it contains better features and a finer granularity
for the association between a candidate and a job. This
fundamental difference will allow us to tackle the cold
start problem.

2.2. Existing Architectures
In this section, we focus on existing systems for job rec-
ommendations. Although many systems are general, we
discuss the particularities of recommending a job to a
candidate.

2.2.1. Traditional Recommender Systems

The most popular systems are based on collaborative fil-
tering [10, 11] in which the idea is to find similar users
based on their shared items (or the opposite). Therefore,
it performs poorly with sparse data and suffers from the
cold start problem, i.e., it has difficulties making recom-
mendations when a user has no or few interactions with
other items. Some works [12, 13] try to include addi-
tional features in the process, but it generally requires
a lot of work for feature engineering and encoding. Be-
sides, due to the nature of the datasets, the features are
rarely semantic.

Another category of algorithms is based on matrix
factorization [14, 15, 16]. They also suffer from sparsity
and cold start issues as they are using the interaction
matrix.

2.2.2. Graph-based Recommender Systems

Homogeneous and heterogeneous graphs are the natural
structures to include semantic information, leading to

graph-based recommender systems [17, 18, 19, 20]. Most
of them are based on Graph Neural Networks (GNN).
Authors in [21] construct a knowledge graph for movie
recommendation using DBpedia [22] and connect it to
items only. Then, using Node2Vec [23] they compute
embeddings for users and items and plug them into a
classifier. Here, the representation of the entities is not
directly linked to the recommendation. KTUP [24] is
inspired by TransH [25]. It contains two components: A
knowledge graph encoder (TransH) and a user preference
generator. This last part needs to learn embeddings for
all users and items solely from user-item interactions,
which is impossible in our case due to the sparsity of
data. KGAT is [26] is based on an attention network on
top of a heterogeneous graph and was tested to recom-
mend books, music, and places (Yelp). However, they just
consider the case where only items have features and,
therefore, connections to semantic nodes. This makes
it possible to leverage general paths in the graph. In
our case, we have a deeper and denser semantic network.
HAGERec [27] makes similar assumptions as KGAT, with
a network composed of hierarchical attention and con-
volution layers.

2.2.3. Job Recommender Systems

Job recommendation is less studied than other topics like
books and movies because of the lack of data. In par-
ticular, we find the CareerBuilder and Xing dataset [28].
This last dataset cannot be accessed anymore. Both of
these datasets have very little semantic information. The
simplest algorithms build a traditional classifier on top
of manually designed features [29]. Most approaches are
variations of conventional collaborative filtering [30, 31].
In [32], the authors use a pure feature approach. They
give an autoencoder the history of interactions with jobs
and a few features on these jobs. In this paper, we are
working on more connected data and still want to have a
collaborative filtering part. [33] also uses a pure feature
approach by building an embedding for each user-item
pair based solely on the features. In [34], they tackle

the problem of cold start by using textual job descrip-
tions. They aim for a new item to find an old, similar
item and copy its interactions. However, if a new job
category arrives (e.g., a new technology is introduced),
then the system will perform poorly as there was no sim-
ilar item before. [35] uses a graph-based approach for a
job recommendation, but they have very little semantic
information. [36] is a system that recommends jobs from
a skill list. It first learns embeddings for each skill from
the ESCO ontology and then computes a similarity with
job postings. This system does not learn from training
for the recommendation part. Besides, ESCO contains
mostly high-level skills. We will show it is possible to
complement it with other sources.

We also find other kinds of recommender systems in
the job market. For example, [37] recommends useful
skills to learn. They construct of graph of skills and apply
topic-modelling techniques to make the recommendation
depend on the context. However, their approach only
considers job postings (no candidates), and the graph they
use is a simple cooccurrence graph. Still, they investigate
useful features for job postings. [38] focuses on skill rec-
ommendation from the candidate’s point-of-view. They
construct a skill ontology based on information mined
on several websites. The job postings are not considerate.
In our work, we use an existing ontology (ESCO) that we
complete with an external knowledge base (Wikidata).

3. Problem Formulation
Heterogeneous Graph (or Knowledge Graph, KG) is
a tuple 𝐺 = (𝑉,𝑅,𝐸) where 𝑉 is the set of all the nodes
(or entities), 𝑅 is the set of all relationships, and 𝐸 is
the set of edges (𝑒0, 𝑟, 𝑒1) where 𝑒0 ∈ 𝑉 , 𝑒1 ∈ 𝑉 , and
𝑟 ∈ 𝑅. Besides, each node is associated with a type that
is a subset of 𝑉 .

In our case, the nodes will be composed of types like
candidates, job postings, skills, or salaries. The relations
will encode semantic information like “has skill”, “wants
salary”, “requires skill”, or “was selected for job”. Figure 1
shows an example of a heterogeneous graph.

Graph-Based Recommendation Given a heteroge-
neous graph 𝐺 = (𝑉,𝑅,𝐸), a type 𝑈 (the users or
candidates), a type 𝐼 (the items or jobs), and a relation
𝑟 ∈ 𝑅, we want to predict for all 𝑢 ∈ 𝑈 and all 𝑖 ∈ 𝐼 if
(𝑢, 𝑟, 𝑖) ∈ 𝐸.

In our case, we are mainly interested in relationships
between candidates and job postings that indicate a posi-
tive recruitment. Of course, when we make the predic-
tion, we need to be careful not to use the original edge if
it exists.

In this paper, we tackle the case of heterogeneous
graph-based recommendation for job recommendation.

The sparsity of this use case also raises the problem of
the cold start, i.e., making recommendations for a user
with no or very few interactions with other items.

4. Methodology
In this section, we introduce our approach. It comprises
three parts: Creating a job recommendation dataset, cre-
ating the heterogeneous graph enriched with semantic in-
formation, and applying the recommendation algorithm
to this graph.

4.1. Job Tracking History Dataset
Our dataset was constructed from a real-life IT recruit-
ment system containing three main types of entities. The
first one is the candidates who are looking for a job. The
second one is job positions that need to be filled. The
last one is recruiters, whose primary role is to match can-
didates with positions. Once this matching is done, the
company behind the job posting can choose to interview
the candidates and potentially recruit them. Therefore,
we do not have a binary association between users and
items but rather a gradual score. In comparison with the
CareerBuilder dataset, we have a less noisy dataset. In
their case, an interaction is simply when a candidate ap-
plies for a job, whereas in our case, at least a professional
recruiter validated the match.

To help the recruiter in this process, semantic informa-
tion surrounds the candidates and the job postings. For
the candidate, we have the resume from which skills are
extracted, the current position, the current salary, the ex-
perience (in years), the asked salary, the area of expertise,
the source (the system finds candidates through various
websites), the desired type of contract, and the location.
For the job postings, we have the company that emitted
it, the type of contract, the area of expertise required, a
description, the required skills, the proposed salary, the
date of emission, and the location. Most features are man-
ually entered into the system by expert recruiters. The
data also comes with the timestamp of significant events
(creation of a posting, date of an interview, creation of a
profile).

We call our final dataset Job Tracking History (JTH).
Statistics about it can be found in Table 1.

4.2. Recruiting Graph
From JTH, we can start building our recruiting graph.
It comprises eleven kinds of nodes: the candidates, job
postings, skills, salaries, years of experience, recruiters,
companies, areas of expertise, employment types, local-
ization, and candidate source. The relations are the ones
described in Section 4.1. For candidates, job postings,

and skills, we also add a feature vector corresponding to
the embeddings of the resume, job description, and skill
name obtained with a sentence encoder built on top of
MiniLM [39]. For some nodes representing continuous
values (salaries, years of experience, location), we created
nodes representing value ranges.

Then, we enhanced the semantic information for skills
using two external knowledge bases: ESCO [40] (Euro-
pean Skills, Competences, Qualifications, and Occupa-
tions) and Wikidata [41]. ESCO is a European taxonomy
of skills, competencies, and occupations. We only use the
skill hierarchy from this taxonomy, i.e., how the skills are
classified. As ESCO is limited regarding IT-specific skills
(libraries, platforms), we augmented it using information
extracted from Wikidata. In this new taxonomy, a skill
can be associated with several labels. We use them to
merge previous skill names (e.g., Javascript and JS).

Figure 1 shows an example of our recruiting graph.

4.3. Job Recommendation System
In this paper, we will focus on predicting if a link between
a candidate and a job posting exists, even if we have a
finer granularity (matched, interviewed, selected). Each
node in our graph is associated with an embedding. For
nodes with features, the embedding combines the graph
embedding and the feature vector through a linear layer.

Given a candidate 𝑐 and a job posting 𝑗, we start by
sampling a subgraph centered on 𝑢 and 𝑗. To do so, we
follow [42] by sampling interactively a certain number
of neighbors given previously known nodes. This step is
crucial as running a GNN on the entire graph would be
impossible in a reasonable time.

Then, we pass our subgraph into a multilayer graph
convolutional network (GCN) following a similar archi-
tecture as [42]. Initially, this architecture only worked
for homogeneous graphs, so we used the transforma-
tion presented in [43]. The idea of this transformation is
to duplicate the original network for each relation and
then recombine the obtained representations. After the
GNN layers, we receive a vector representation for 𝑢
and 𝑖. We take the dot product of the two to make the
prediction. We used the standard cross-entropy loss to
evaluate the performance of the classifier. The architec-
ture is presented in Figure 2. We call our final model
RecruiterGCN.

5. Experiment Setup

5.1. Implementation
We used Python and the PyTorch Geometric library [44].
For the implementation of the baselines, we used LibRec-
ommender [45]. We split our dataset into train, valida-
tion, and test sets following the proportion 0.8/0.1/0.1.

We ran the experiments on a computer with a processor
at 2.2GHz and 14 cores and an NVIDIA Tesla V100 GPU
with 32 GB of RAM. We stop the training phase following
an early stop mechanism on the loss function. In total,
for a given set of hyperparameters, the computation time
was around five hours.

For the hyperparameters, we vary the number of lay-
ers, the number of neighbors used during sampling, the
learning rate, and the negative sampling rate. We found
the best results with six layers, a learning rate of 0.0001,
a weight decay of 0.001, a two-stage sample with first
twenty neighbors and then ten neighbors, and the cre-
ation of one random negative sample for each positive
sample.

Our final code is available on
GitHub github.com/EricPoulet/RecSysInHR2023.

5.2. Baselines
We include a large variety of algorithms in our base-
lines. First, we have traditional collaborative filtering
approaches. UserCF [11] is a user-based collaborative
filtering based on the interaction matrix. Item2Vec [13]
is an item-based collaborative filtering algorithm that
learns embeddings for each item. ALS [16] is a matrix
factorization algorithm. YouTubeRanking [12] is an ap-
proach that emphasizes external features more strongly.
We manually create a feature vector that, for a given
user and item, is composed of the number of common
skills, if they have the same expertise area, the kind of
contract, the source of the candidate, the years of expe-
rience, the salary, the distance to go to the job, and the
cosine similarity between the resume and the job descrip-
tion. AutoInt [46] is another system that also leverages
user-item features.

For the graph-based approaches, we used Light-
GCN [47], which takes the interaction graph (only candi-
dates and jobs) as input and is based on a GCN. Graph-
Sage [48] is a more advanced variation that takes similar
input but puts more emphasis on sampling.

5.3. Metrics
In this paper, we report four metrics traditionally used in
recommender systems: the mean precision at 𝐾 (P@K),
the mean recall at 𝐾 (R@K), the mean average precision
at 𝐾 (MAP@K), and the normalized discounted cumula-
tive gain at 𝐾 (NDCG@K).

6. Results

6.1. Comparison With Baselines
Table 2 compares our approach with the baselines. We
can see that RecruiterGCN beats all baselines for the pre-

https://github.com/EricPoulet/RecSysInHR2023

SAMPLING GCN
U

I

U

I

U

I

X

Figure 2: The Multilayer Graph Network Architecture For Job Recommendation

.

Algorithm P@10 R@10 MAP@10 NDCG@10
RecruiterGCN 0.0175 0.159 0.0505 0.051
UserCF [11] 0.0111 0.0917 0.0534 0.0826
Item2Vec [13] 0.0097 0.0801 0.0343 0.0471
GraphSage [48] 0.002 0.0157 0.0045 0.0079
LightGCN [47] 0.0108 0.0926 0.0463 0.0597
AutoInt [46] 0.001 0.0075 0.0032 0.0047
YouTubeRanking [12] 0.0005 0.0041 0.001 0.002
ALS [16] 0.0048 0.0401 0.0253 0.0303

Table 2
Comparison of RecruiterGCN With the Baselines

cision at K and the recall at K, but not for MAP@K and
NDCG@K. These two last metrics emphasized the order
of the recommendations, showing that our model might
not be able to rank the top recommendations correctly.
Still, if the order is unimportant (a recruiter can easily
post-process the ten suggestions), our algorithm brings
extra value compared to the competitors. In particular,
it improves over the other graph-based baselines. Re-
garding the model, it remains close to them in structure,
which shows the importance of semantic information.

The simple user-based collaborative filtering algorithm
works surprisingly well when we look at the baselines.
This is not intuitive as the cold start problem should
disadvantage it. However, looking more into the data, we
notice that recruiters like to cluster similar candidates and
match them to identical job postings. Therefore, it biases
the results as knowing the group of a user makes the
predictions easier. This suggests we should use a more
advanced sampling mechanism and train/validation/test
split based on the date and by ignoring some types of
nodes.

The results are disappointing when we look at feature-
based baselines (AutoInt and YoutubeRanking). We had
to manually translate the semantic information into a
continuous vector for them. Therefore, the features engi-
neering can be long and fastidious. On the contrary, se-
mantic information is naturally represented with a graph

Setup P@10 R@10 MAP@10 NDCG@10
All - Skill 0.0175 0.1592 0.0505 0.051
All - Salary 0.0173 0.1568 0.0511 0.0514
All 0.0163 0.1487 0.05 0.0504
All - Company 0.0161 0.1466 0.0514 0.0518
All - Origin 0.016 0.1468 0.0515 0.0517
All - Zip 0.0159 0.1451 0.0495 0.0496
All - Contract 0.0156 0.1429 0.0461 0.0462
All - Recruiter 0.0152 0.1389 0.045 0.0451
All - Experience 0.0142 0.1296 0.0404 0.0405
All - Concept 0.0136 0.1245 0.0377 0.038
All - Category 0.0094 0.0843 0.0246 0.0247
Job + Candidate 0.0043 0.0389 0.016 0.016

Table 3
Ablation Study - Ranked Results by P@10

with minimal human actions. RecruiterGCN automati-
cally extracts relevant features and integrates them into
the final results. Besides, it is more flexible as adding
features does not require more feature engineering.

6.2. Ablation Study
We performed an ablation study to evaluate the impact of
each semantic information in our graph. For each type of
node (except candidates and jobs), we remove it from the
recruiting graph and rerun the experiments on it. The
study results are presented in Table 3.

As expected, the graph without semantic information
(Job + Candidate) gets poor results. However, the entire
graph (All) does not get the best results. There can be
three main explanations for that fact. First, we might
have noise in the evaluation that can cause slight varia-
tions. Second, we remove potential noise in the graph by
eliminating some nodes. Therefore, the network might
be able to reach a better optimum. Third, because of the
sampling strategy, we might add additional noise if we
have too many semantic nodes. Here, we call “noise” the
presence of too much information or irrelevant informa-
tion in the graph for the final recommendation.

The best setup is obtained with no skill in the graph,
which is a bit surprising. In fact, we still have general
skills with the category nodes that are areas of expertise
manually entered by recruiters. When we remove the
skills, we remove some noise, and the network can better
focus on other nodes. We can see that by eliminating
areas of expertise (All - Category), we deteriorate the
results deeply. We also notice decreased performance
when we remove the skill hierarchy (All - Concept). This
goes in a similar direction as the area of expertise: What
is essential are general skills (e.g., databases) rather than
specific skills (e.g., MySQL).

We notice that continuous values are hard to exploit for
the network: Removing salaries (All - Salary) improves
the performance, and removing the location (All - Zip)
does not have much impact. However, these two factors
should be crucial. As we used a graph structure, we had
to discretize the values into ranges. We lost ordinal and
comparative information in the process, making the end
nodes useless.

Some nodes do not seem to have much impact. Re-
moving the company (All - Company) does not change
the results. This is expected, and no prior reason exists
for a company to recruit a random candidate. Likewise,
the candidate’s origin does not change the results (All -
Origin). It shows the quality of the candidates does not
depend on the website where the recruiter found them.

Three other kinds of nodes have a negative influence
on the results. First, the type of contract (All - Contract),
which is logical as both the company and the candidate
are generally stringent on this point. Second, the re-
cruiter who found the candidate (All - Recruiter). This
shows that some recruiters might be better at finding
good candidates. Our recommender system could help
junior recruiters to improve their skills. Finally, years
of experience are crucial (All - Experience). This is also
understandable, as a candidate with more experience is
likelier to get a position.

6.3. Limitations And Future Works
The comparison with the baselines and the ablation study
raised problems that can lead to thrilling future works.

First, we saw that splitting the dataset into train, valida-
tion, and test sets is an essential step for preventing biases
introduced by the recruiters. The temporal aspect has a
huge impact, although it is less studied in the literature.
Likewise, the sampling strategies must be improved to
include time and prevent too much noise in the network.

Continuous values can be tricky to use. We must find a
way to encode distances or cardinal orders between nodes
to keep the standard graph representation. Otherwise,
we should adjust the message-passing algorithm used
in the GCN to have a special treatment for these nodes.
In particular, we need a way to include the temporal
dimension in the graph as it is crucial for recruitment:
We cannot suggest an old job posting to a new candidate
as it is very likely it is already filled.

Next, we ignored the granularity of the interactions
between a candidate and a job, whereas it could help to
reward top recommendations that lead to a new job rather
than a simple match. In the future, we must include this
granularity during training and testing. Therefore, we
must adapt the loss functions and the evaluation metrics.

Finally, as our system is supposed to assist one of the
actors of our system (candidate, company, or recruiter),
we need to work on how to present the recommendation.
Notably, we must be able to explain the recommendations
using the semantic information in the graph.

7. Conclusion
In this paper, we studied the problem of job recommen-
dation. We leveraged a new human-annotated dataset
containing semantic information. We showed this infor-
mation can be translated into a heterogeneous graph
without much manual feature engineering tradition-
ally used in other systems. Then, we applied a graph
neural network to produce relevant recommendations.
We showed that our system, RecruiterGCN, beats the
state-of-the-art methods to isolate the top recommen-
dations but still lacks more precise ranking capabilities.
Our ablation study revealed that there are still points
of improvement, particularly regarding the inclusion
of time in our model. Our final code is available on
GitHub github.com/EricPoulet/RecSysInHR2023.

Acknowledgments
We thank EasyPartner for providing the data for this
project. We also thank the reviewers for their feedback.
Our work would not have been possible without the
resources provided by Lab-IA.

https://github.com/EricPoulet/RecSysInHR2023
https://lab-ia.fr/

References
[1] I. Gallup, State of the american workplace,

2017. URL: http://www.gallup.com/reports/199961/
state-american-workplace-report-2017.aspx.

[2] F. B. Inside, Online recruitment market size,
share & covid-19 impact analysis, 2020. URL:
https://www.fortunebusinessinsights.com/
online-recruitment-market-103730.

[3] S. for Human Resource Management,
2016 human capital benchmarking re-
port, 2016. URL: https://www.shrm.org/
resourcesandtools/business-solutions/documents/
human-capital-report-all-industries-all-ftes.pdf.

[4] U. B. of Labor, Labor statistics, 2020. URL: https:
//www.bls.gov/opub/mlr/2020/.

[5] TalentWorks, Science of the job search, https://web.
archive.org/web/20190322214104/http://talent.
works/blog/category/science-of-the-job-search,
2019.

[6] F. M. Harper, J. A. Konstan, The movielens datasets:
History and context, ACM Trans. Interact. Intell.
Syst. 5 (2015). URL: https://doi.org/10.1145/2827872.
doi:10.1145/2827872.

[7] E. Cho, S. A. Myers, J. Leskovec, Friendship and mo-
bility: User movement in location-based social net-
works, in: Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’11, Association for Com-
puting Machinery, New York, NY, USA, 2011, p.
1082–1090. URL: https://doi.org/10.1145/2020408.
2020579. doi:10.1145/2020408.2020579.

[8] N. Asghar, Yelp dataset challenge: Review rating
prediction, arXiv preprint arXiv:1605.05362 (2016).

[9] CareerBuilder, Job recommendation challenge,
https://www.kaggle.com/c/job-recommendation,
2012.

[10] J. B. Schafer, D. Frankowski, J. Herlocker, S. Sen,
Collaborative filtering recommender systems, in:
The adaptive web: methods and strategies of web
personalization, Springer, 2007, pp. 291–324.

[11] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-
based collaborative filtering recommendation algo-
rithms, in: Proceedings of the 10th international
conference on World Wide Web, 2001, pp. 285–295.

[12] P. Covington, J. Adams, E. Sargin, Deep neural net-
works for youtube recommendations, in: Proceed-
ings of the 10th ACM conference on recommender
systems, 2016, pp. 191–198.

[13] O. Barkan, N. Koenigstein, Item2vec: neural item
embedding for collaborative filtering, in: 2016 IEEE
26th International Workshop on Machine Learning
for Signal Processing (MLSP), IEEE, 2016, pp. 1–6.

[14] Y. Koren, R. Bell, C. Volinsky, Matrix factorization
techniques for recommender systems, Computer

42 (2009) 30–37.
[15] Y. Koren, Factorization meets the neighborhood: a

multifaceted collaborative filtering model, in: Pro-
ceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, 2008, pp. 426–434.

[16] Y. Hu, Y. Koren, C. Volinsky, Collaborative filtering
for implicit feedback datasets, in: 2008 Eighth IEEE
international conference on data mining, Ieee, 2008,
pp. 263–272.

[17] S. Wu, F. Sun, W. Zhang, X. Xie, B. Cui, Graph
neural networks in recommender systems: a survey,
ACM Computing Surveys 55 (2022) 1–37.

[18] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong,
Q. He, A survey on knowledge graph-based rec-
ommender systems, IEEE Transactions on Knowl-
edge and Data Engineering 34 (2022) 3549–3568.
doi:10.1109/TKDE.2020.3028705.

[19] S. Wang, L. Hu, Y. Wang, X. He, Q. Z. Sheng,
M. A. Orgun, L. Cao, F. Ricci, P. S. Yu, Graph learn-
ing based recommender systems: A review, 2021.
arXiv:2105.06339.

[20] S. Wu, F. Sun, W. Zhang, X. Xie, B. Cui, Graph neu-
ral networks in recommender systems: A survey,
ACM Comput. Surv. 55 (2022). URL: https://doi.org/
10.1145/3535101. doi:10.1145/3535101.

[21] E. Palumbo, G. Rizzo, R. Troncy, Entity2rec: Learn-
ing user-item relatedness from knowledge graphs
for top-n item recommendation, in: Proceed-
ings of the Eleventh ACM Conference on Rec-
ommender Systems, RecSys ’17, Association for
Computing Machinery, New York, NY, USA, 2017,
p. 32–36. URL: https://doi.org/10.1145/3109859.
3109889. doi:10.1145/3109859.3109889.

[22] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyga-
niak, Z. Ives, Dbpedia: A nucleus for a web of open
data, in: international semantic web conference,
Springer, 2007, pp. 722–735.

[23] A. Grover, J. Leskovec, node2vec: Scalable feature
learning for networks, in: Proceedings of the 22nd
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 2016, pp. 855–864.

[24] Y. Cao, X. Wang, X. He, Z. Hu, T.-S. Chua, Unifying
knowledge graph learning and recommendation:
Towards a better understanding of user preferences,
in: The World Wide Web Conference, WWW ’19,
Association for Computing Machinery, New York,
NY, USA, 2019, p. 151–161. URL: https://doi.org/
10.1145/3308558.3313705. doi:10.1145/3308558.
3313705.

[25] Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge
graph embedding by translating on hyperplanes,
in: Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence, AAAI’14, AAAI
Press, 2014, p. 1112–1119.

http://www.gallup.com/reports/199961/state-american-workplace-report-2017.aspx
http://www.gallup.com/reports/199961/state-american-workplace-report-2017.aspx
https://www.fortunebusinessinsights.com/online-recruitment-market-103730
https://www.fortunebusinessinsights.com/online-recruitment-market-103730
https://www.shrm.org/resourcesandtools/business-solutions/documents/human-capital-report-all-industries-all-ftes.pdf
https://www.shrm.org/resourcesandtools/business-solutions/documents/human-capital-report-all-industries-all-ftes.pdf
https://www.shrm.org/resourcesandtools/business-solutions/documents/human-capital-report-all-industries-all-ftes.pdf
https://www.bls.gov/opub/mlr/2020/
https://www.bls.gov/opub/mlr/2020/
https://web.archive.org/web/20190322214104/http://talent.works/blog/category/science-of-the-job-search
https://web.archive.org/web/20190322214104/http://talent.works/blog/category/science-of-the-job-search
https://web.archive.org/web/20190322214104/http://talent.works/blog/category/science-of-the-job-search
https://doi.org/10.1145/2827872
http://dx.doi.org/10.1145/2827872
https://doi.org/10.1145/2020408.2020579
https://doi.org/10.1145/2020408.2020579
http://dx.doi.org/10.1145/2020408.2020579
https://www.kaggle.com/c/job-recommendation
http://dx.doi.org/10.1109/TKDE.2020.3028705
http://arxiv.org/abs/2105.06339
https://doi.org/10.1145/3535101
https://doi.org/10.1145/3535101
http://dx.doi.org/10.1145/3535101
https://doi.org/10.1145/3109859.3109889
https://doi.org/10.1145/3109859.3109889
http://dx.doi.org/10.1145/3109859.3109889
https://doi.org/10.1145/3308558.3313705
https://doi.org/10.1145/3308558.3313705
http://dx.doi.org/10.1145/3308558.3313705
http://dx.doi.org/10.1145/3308558.3313705

[26] X. Wang, X. He, Y. Cao, M. Liu, T.-S. Chua, Kgat:
Knowledge graph attention network for recom-
mendation, in: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’19, Association for
Computing Machinery, New York, NY, USA, 2019,
p. 950–958. URL: https://doi.org/10.1145/3292500.
3330989. doi:10.1145/3292500.3330989.

[27] Z. Yang, S. Dong, Hagerec: Hierarchical attention
graph convolutional network incorporating
knowledge graph for explainable recommendation,
Knowledge-Based Systems 204 (2020) 106194. URL:
https://www.sciencedirect.com/science/article/pii/
S0950705120304196. doi:https://doi.org/10.
1016/j.knosys.2020.106194.

[28] F. Abel, A. Benczúr, D. Kohlsdorf, M. Larson,
R. Pálovics, Recsys challenge 2016: Job recom-
mendations, in: Proceedings of the 10th ACM
Conference on Recommender Systems, RecSys ’16,
Association for Computing Machinery, New York,
NY, USA, 2016, p. 425–426. URL: https://doi.org/
10.1145/2959100.2959207. doi:10.1145/2959100.
2959207.

[29] P. K. Roy, S. S. Chowdhary, R. Bhatia, A
machine learning approach for automation
of resume recommendation system, Proce-
dia Computer Science 167 (2020) 2318–2327.
URL: https://www.sciencedirect.com/science/
article/pii/S187705092030750X. doi:https:
//doi.org/10.1016/j.procs.2020.03.284,
international Conference on Computational
Intelligence and Data Science.

[30] S. Yang, M. Korayem, K. AlJadda, T. Grainger,
S. Natarajan, Combining content-based and col-
laborative filtering for job recommendation system:
A cost-sensitive statistical relational learning ap-
proach, Knowledge-Based Systems 136 (2017) 37–
45. URL: https://www.sciencedirect.com/science/
article/pii/S095070511730374X. doi:https://doi.
org/10.1016/j.knosys.2017.08.017.

[31] R. Mishra, S. Rathi, Efficient and scalable job rec-
ommender system using collaborative filtering, in:
ICDSMLA 2019: Proceedings of the 1st Interna-
tional Conference on Data Science, Machine Learn-
ing and Applications, Springer, 2020, pp. 842–856.

[32] E. Lacic, M. Reiter-Haas, D. Kowald,
M. Reddy Dareddy, J. Cho, E. Lex, Using au-
toencoders for session-based job recommendations,
User Modeling and User-Adapted Interaction 30
(2020) 617–658.

[33] J. Zhao, J. Wang, M. Sigdel, B. Zhang, P. Hoang,
M. Liu, M. Korayem, Embedding-based recom-
mender system for job to candidate matching on
scale, arXiv preprint arXiv:2107.00221 (2021).

[34] J. Yuan, W. Shalaby, M. Korayem, D. Lin, K. AlJadda,

J. Luo, Solving cold-start problem in large-scale rec-
ommendation engines: A deep learning approach,
in: 2016 IEEE International Conference on Big Data
(Big Data), IEEE, 2016, pp. 1901–1910.

[35] W. Shalaby, B. AlAila, M. Korayem, L. Pournajaf,
K. AlJadda, S. Quinn, W. Zadrozny, Help me find a
job: A graph-based approach for job recommenda-
tion at scale, in: 2017 IEEE international conference
on big data (big data), IEEE, 2017, pp. 1544–1553.

[36] A. Giabelli, L. Malandri, F. Mercorio, M. Mezzan-
zanica, A. Seveso, Skills2job: A recommender sys-
tem that encodes job offer embeddings on graph
databases, Applied Soft Computing 101 (2021)
107049.

[37] T. Xu, H. Zhu, C. Zhu, P. Li, H. Xiong, Measuring
the popularity of job skills in recruitment market:
A multi-criteria approach, in: Proceedings of the
Thirty-Second AAAI Conference on Artificial In-
telligence and Thirtieth Innovative Applications of
Artificial Intelligence Conference and Eighth AAAI
Symposium on Educational Advances in Artifi-
cial Intelligence, AAAI’18/IAAI’18/EAAI’18, AAAI
Press, 2018.

[38] A. Gugnani, V. K. R. Kasireddy, K. Ponnalagu, Gen-
erating unified candidate skill graph for career
path recommendation, in: 2018 IEEE International
Conference on Data Mining Workshops (ICDMW),
IEEE, 2018, pp. 328–333.

[39] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, M. Zhou,
Minilm: Deep self-attention distillation for task-
agnostic compression of pre-trained transformers,
Advances in Neural Information Processing Sys-
tems 33 (2020) 5776–5788.

[40] ESCO, Esco: European skills, competences, quali-
fications and occupations, esco.ec.europa.eu, 2023.
Accessed: 2023-08-01.

[41] D. Vrandečić, M. Krötzsch, Wikidata: a free col-
laborative knowledgebase, Communications of the
ACM 57 (2014) 78–85.

[42] W. Hamilton, Z. Ying, J. Leskovec, Inductive rep-
resentation learning on large graphs, Advances in
neural information processing systems 30 (2017).

[43] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van
Den Berg, I. Titov, M. Welling, Modeling relational
data with graph convolutional networks, in: The Se-
mantic Web: 15th International Conference, ESWC
2018, Heraklion, Crete, Greece, June 3–7, 2018, Pro-
ceedings 15, Springer, 2018, pp. 593–607.

[44] M. Fey, J. E. Lenssen, Fast graph representation
learning with pytorch geometric, arXiv preprint
arXiv:1903.02428 (2019).

[45] LibRecommender, Librecommender, librecom-
mender.readthedocs.io, 2023. Accessed: 2023-08-01.

[46] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu, M. Zhang,
J. Tang, Autoint: Automatic feature interaction

https://doi.org/10.1145/3292500.3330989
https://doi.org/10.1145/3292500.3330989
http://dx.doi.org/10.1145/3292500.3330989
https://www.sciencedirect.com/science/article/pii/S0950705120304196
https://www.sciencedirect.com/science/article/pii/S0950705120304196
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2020.106194
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2020.106194
https://doi.org/10.1145/2959100.2959207
https://doi.org/10.1145/2959100.2959207
http://dx.doi.org/10.1145/2959100.2959207
http://dx.doi.org/10.1145/2959100.2959207
https://www.sciencedirect.com/science/article/pii/S187705092030750X
https://www.sciencedirect.com/science/article/pii/S187705092030750X
http://dx.doi.org/https://doi.org/10.1016/j.procs.2020.03.284
http://dx.doi.org/https://doi.org/10.1016/j.procs.2020.03.284
https://www.sciencedirect.com/science/article/pii/S095070511730374X
https://www.sciencedirect.com/science/article/pii/S095070511730374X
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2017.08.017
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2017.08.017
https://esco.ec.europa.eu
https://librecommender.readthedocs.io
https://librecommender.readthedocs.io

learning via self-attentive neural networks, in: Pro-
ceedings of the 28th ACM international conference
on information and knowledge management, 2019,
pp. 1161–1170.

[47] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang,
M. Wang, Lightgcn: Simplifying and powering
graph convolution network for recommendation,
2020. arXiv:2002.02126.

[48] W. L. Hamilton, R. Ying, J. Leskovec, Inductive
representation learning on large graphs, 2018.
arXiv:1706.02216.

http://arxiv.org/abs/2002.02126
http://arxiv.org/abs/1706.02216

	1 Introduction
	2 Previous Work
	2.1 Datasets
	2.2 Existing Architectures
	2.2.1 Traditional Recommender Systems
	2.2.2 Graph-based Recommender Systems
	2.2.3 Job Recommender Systems

	3 Problem Formulation
	4 Methodology
	4.1 Job Tracking History Dataset
	4.2 Recruiting Graph
	4.3 Job Recommendation System

	5 Experiment Setup
	5.1 Implementation
	5.2 Baselines
	5.3 Metrics

	6 Results
	6.1 Comparison With Baselines
	6.2 Ablation Study
	6.3 Limitations And Future Works

	7 Conclusion

