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Abstract
Understanding labour market dynamics requires accurately identifying the skills required for and possessed by the workforce.
Automation techniques are increasingly being developed to support this effort. However, automatically extracting skills from job
postings is challenging due to the vast number of existing skills. The ESCO (European Skills, Competences, Qualifications and
Occupations) framework provides a useful reference, listing over 13,000 individual skills. However, skills extraction remains
difficult and accurately matching job posts to the ESCO taxonomy is an open problem. In this work, we propose an end-to-end
zero-shot system for skills extraction from job descriptions based on large language models (LLMs). We generate synthetic
training data for the entirety of ESCO skills and train a classifier to extract skill mentions from job posts. We also employ a
similarity retriever to generate skill candidates which are then re-ranked using a second LLM. Using synthetic data achieves an
RP@10 score 10 points higher than previous distant supervision approaches. Adding GPT-4 re-ranking improves RP@10 by
over 22 points over previous methods. We also show that Framing the task as mock programming when prompting the LLM
can lead to better performance than natural language prompts, especially with weaker LLMs. We demonstrate the potential of
integrating large language models at both ends of skills matching pipelines. Our approach requires no human annotations and
achieve extremely promising results on skills extraction against ESCO.
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1. Introduction
The Job Market is often described as constantly evolving,
as technological developments and societal changes result
in large changes in its makeup, as has been frequently
studied and demonstrated [1, 2]. In recent years, the rapid
digitisation of society has led to entirely new categories
of skills becoming requirements for many jobs[3]. As
demands for skills evolve, there is an increasing need
to better understand the skills required by jobs. This
has supported the continuous development of skill tax-
onomies such as the European Union’s European Skills,
Competences, Qualifications and Occupations, or ESCO
[4], framework, developed to improve understanding and
efficiency of the wider EU job market.

While useful, such frameworks require skill extraction
(SE) approaches to understand skills present in job post-
ings and enable automation at scale. Skills Extraction
has recently been the subject of an increased amount of
interest[5], which has been further compounded by re-
search showing that a large proportion of required skills
are implicitly expressed rather than explicitly stated within
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postings [6].
However, automated skills extraction faces consider-

able roadblocks. Most notably, many efforts are limited
in scale by the lack of available data for both training and
evaluation. Recent efforts have begun to try and allevi-
ate this effort, by publicly releasing manually annotated
datasets. These approaches, while promising, suffer from
the complexity of the task, as the ESCO taxonomy con-
tains 13 890 individual skills. As a result, the task is
often re-framed or simplified, for example by converting
the task into a span-extraction task [7, 8], leaving direct
matching to the taxonomy for future work. Some recent
work has explored this Extreme Multi-Label Classification
(XLMC) task with an end-to-end approach to matching
and extraction with non-ESCO taxonomies, with encour-
aging results [6, 9], although sometimes relying on sim-
plifying the taxonomy by using only higher-level labels
[10].

In fact, the task of Skills Extraction against a taxonomy
could be framed as a two-tasks process: 1 an extraction
step, focused on recognising the potential mentions of
skills, or groups of skills, from the content of job postings,
on which strong progress has been made [7, 11, 6], and
2 a matching step, akin to extreme multi-label classifica-

tion, focused on linking these mentions with fine-grained
taxonomies, which remains a difficult problem.

The sheer number of existing skills makes it very diffi-
cult to obtain sufficient training data for comprehensive
coverage. As such, various techniques, such as using
the ESCO API as a form of distant supervision [12] and
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generating training data through such distant supervision
techniques [13], have been explored.

Meanwhile, the rapid development and improvement
of generative large language models (LLMs) [14] and es-
pecially instruction-tuned LLMs [15, 16] , models further
trained to specifically follow natural language instructions,
has resulted in the use of generative LLMs on a large array
of applications, often yielding competitive or even state-
of-the-art results across many tasks, as highlighted by the
release and strong performance of OpenAI’s GPT-4 [17].
Notably, LLMs have shown their ability to improve per-
formance on text retrieval tasks through the generation of
synthetic training data based on a handful of real examples
[18]. They have also shown considerable problem-solving
ability, often anthropomorphised as reasoning, which ap-
pears to be even stronger when the task is framed as a
programming task [19].

Due to the nature of the training data used by Large
Language Models, which contains very large volumes of
content scraped from across the internet [20], we hypoth-
esise that the knowledge representation embedded within
the models makes them particularly suitable for broader
job understanding tasks, as many job postings, as well
as skills descriptions, were present in this data. As such,
we will explore the creation of a zero-shot skills match-
ing pipeline through the use of large language models,
focusing in this case on the use of GPT-3.5 and GPT-4.

Contributions In this paper, we show that: 1 Large
Language Models can reliably generate zero-shot training
data that improves performance in the skill matching task.
We then show that using this data to power both similarity-
based retrieval approaches and linear classifier models
trained on the data can generate good lists of potential
skills found within given text extracts, outperforming the
previous approaches. 2 The Skill Matching task can
be framed as a two-step problem, with the first stage con-
sisting of generating a list of potential skill matches and
the second stage focusing on re-ranking these potential
matches. We show that LLMs can be used as zero-shot
rerankers for this second step of the extraction pipeline
with very strong performance without the need for an-
notated data. 3 Framing the skills matching task as a
mock programming problem provides a further perfor-
mance boost for both large language models tested. More
notably, it improves the performance of the less capa-
ble model by over 10 percentage points by enhancing its
ability to follow instructions.

2. LLM-Generated Data
As discussed, we follow a two-step process to form the
Skills Matching pipeline. While, as we will demonstrate
later, LLMs are strong zero-shot rerankers, it’s impossible

for them to work as standalone classifiers for all ESCO
skills, as the 13890 skills listed in ESCO do not fit within
the context window of most Language Models. Even if
this were possible, the increased compute and process-
ing time required by current Transformer-based models
(used by all LLMs) would make this approach unsuit-
able in many cases, despite promising advancements in
more computationally efficient approaches to Transformer
models [21].

We thus choose to leverage large generative models
for the skills matching task through the generation of
synthetic training data. We believe that this synthetic
training could allow us to perform the skills matching task
without having to reframe the task or rely on useful but
limited distant supervision techniques[13].

For each of the 13890 skills contained in ESCO, we
prompt GPT-3.5 1 to generate forty example sentences
that could be used in a job posting in order to refer to
the skill. We specifically request that the sentences be
phrased in a variety of ways, and be of various lengths
(from just a few words directly referring to the skill to
a few sentences mentioning it implicitly). We provide
slightly different instructions based on the "skill type", for
instance requesting explicit mentions in more examples
when generating data for a skill contained in the tech
ESCO skill listing, as programming languages tend to
be clearly mentioned in job ads. We also use additional
information or skill descriptions present in the ESCO data
to enrich our prompt and help the model disambiguate
between potentially ambiguous terms.

Once the training data is generated, it is not thoroughly
manually reviewed. We performed programmatic checks,
showing that a full forty examples were generated for
more than 97% of skills, with a few of them having fewer
examples due to model context size limits or failure to
properly follow instructions, which were not addressed, as
the entirety of skills but one 2 had more than 30 generated
examples. We sampled a random 100 skills for manual
review to ensure that the generated data met our criteria
and that the prompts contained no obvious mistakes.

The prompts used for data generation are provided in
appendix A.

1Our limited experiments showed that all recent LLMs, including the
open-source Flan-UL2 [22], could potentially perform this task with-
out a strong negative impact on performance. Thoroughly evaluating
different LLMs for this data generation step is beyond the scope of
this work, but would likely be a valuable future area of research, as
we noticed considerable style differences between different models,
leading us to believe a combination of different ones could generate
a more diverse training data set.

2The skill "semen insertion", related to veterinary work, could not
have training data generated for it by the GPT model family, as its
name triggers OpenAI’s content filters.



3. Potential Skills Identification
Following data generation, our next step is the identifi-
cation of potential skills contained within a given text
span. We generate these potential skills through two main
approaches: a linear classifier-based approach, using
linear regression classifiers on frozen embeddings, and
textual similarity approaches, where we rely on the co-
sine distance between embeddings to determine whether
a skill is potentially present or not.

For both of these approaches, we use the E5-LARGE-
V2 text embedding model [23], the current state-of-the-
art embedder for similarity-based information retrieval
whose generated embeddings have also been shown to
reach strong performance for few-shot text classifications,
making it particularly suitable for both of our approaches.

3.1. Classifier Candidates
Our first set of candidates is generated by the use of simple
logistic regression classifiers. We train one binary classi-
fier per label, in a one-versus-all classification approach.
We use no real-world data for these classifiers, instead
training only on the synthetic data generated as described
in section 3.For any given class, we treat all example sen-
tences generated for the label as positive examples and
sample twice as many examples from other labels to use
as negative examples.

Following previous work on skill classification [13], we
use partial hard negative sampling [24] to ensure our mod-
els are better at distinguishing between very similar labels.
To do so, we make it so 10% of the negative examples are
hard negatives, sampled from labels associated with the
example sentences having the highest cosine similarity
with the positive examples.

At inference time, we consider every positive classifi-
cation from the classifiers as a candidate label to be used
for re-ranking.

3.2. Similarity-based Candidates
Our second approach to generating candidate is based on
cosine similarity between embeddings. We generate can-
didate through two distinct approaches: label similarity
and sentence similarity.

Label Similarity This is a simple similarity look-up
between a target extract and the full list of existing labels.
We do not set a threshold for this step, rather, we treat the
40 most similar labels as candidates to be provided to the
re-ranker.

Sentence Similarity For this candidate generator, we
use the cosine distance between the current extract and

the synthetic example sentences. If two sentences with
the same label are part of the 40 most similar sentences,
we add the label to the list of candidates. This is in ef-
fect similar to a simplified form of k-nearest neighbour
classification [25].

4. Zero-Shot Potential Skills Ranking
Once the list of potential skills found in a given span is
generated, we prompt an LLM to extract and rank the
ten most likely skills in order of suitability. This is the
reranking step, a key component of information retrieval
pipelines, which is increasingly performed by fine-tuned
language models [26]. In this work, we explore how a
zero-shot approach leveraging LLMs’ "learned knowl-
edge" performs on our task.

4.1. A Note About the Evaluated LLMs
We report results for both GPT 3.5, an instruction-tuned
[16], more powerful version of GPT-3 [27], more specif-
icallyGPT-3.5-TURBO-0301 and GPT 4 [17] (GPT-4-
0314), which produced the most promising results in our
exploratory work. Most of our prompt engineering work
was performed for GPT 4, and re-used as-is for GPT 3.5.

While we have not conducted extensive experiments
using them, our exploratory work has shown that open-
source LLMs, of which FLAN-UL2 [22] was the best
performing at the time of this work, failed to produce
reliable outputs, frequently "hallucinating" skills, in a
way similar to GPT 3.5. However, in the case of GPT3
3.5, this was entirely mitigated by the Python approached
described below.

At the time of conducting our experiments, FALCON
[28] had not yet been released and the authors did not
have access to LLAMA [29].

4.2. LLMs as Reranker
We use prompting and prompt engineering [30]and de-
scribe the task or reranking in the prompt. We use a chat-
formatted prompt, through OpenAI’s ChatML [31]. We
give the model a broad description of its role as its initial
prompt, followed by the detailed instructions for the task,
and a mocked message from the model acknowledging
and summarising the instructions.

We then provide the model with a list of potential skills,
generated by the previously described methods. We ex-
periment with both providing the model with information
about the score it received as a potential skill, through
either classification class probability or textual similarity,
depending on the potential skill’s source. We found this
had no impact on performance, and therefore do not pro-
vide this information to the model in our final evaluation



Figure 1: High-level overview of the full process.

to reduce the number of token used in our prompts, thus
reducing the required compute. We pass all skills identi-
fied by the CLASSIFIER approach as well as up to 60 skills
identified by the SIMILARITY-BASED APPROACH.

We request an ordered list of the ten most likely skill
matches in our prompt. In all cases, we provide the model
with the ability to use the NO_LABEL skill to reach 10
skills it identifies fewer or no matches.

All the prompts used for the reranking task are provided
in Appendix A.

4.2.1. Mock Python Programming Variant

Recent work has shown that Large Language Models can
often perform better on "reasoning" tasks when they are
approached as programming exercises [19]. Additionally,
anecdotal evidence often states that it is easier to con-
trol the output of large language models when requiring
programming-like outputs, supposedly due to program-
ming languages’ more structured nature. While investing
the full extent of these claims is beyond the scope of
this work, we experiment with modifying our re-ranking
prompt to include explicit instructions to answer exclu-
sively in Python, in the form of a function returning an
ordered list of ranked skills, and outputting the justifica-
tion for inclusion as a comment. No other modifications
to the instructions are made.

We choose Python over other programming languages
as it is often a good proportion of the programming data
commonly used to train and evaluate LLMs [32, 33] and
requires very little adjustments to the existing re-ranking
step presented in the previous section, which is itself im-
plemented in Python.

5. Experimental Setup
As ESCO-based skills matching is an Extreme Multi-
Label Classification (XMLC) task, we choose to frame

it similarly to an information retrieval task and use IR-
inspired methods, for which we provide a high-level
overview of our architecture in Figure 1. Skills matching
against the ESCO taxonomy, due to the very large number
and granularity of skill labels, justifies this framing: while
we want to assign as many labels present in our test set
as possible, it is also highly likely that many potentially
relevant labels are not attached to our test examples, either
because of oversight or because of subjective judgement
in situations where multiple similar labels applied. As
such, our aim is to maximise our retrieval of test labels,
without harsh penalties for additional labels assigned by
the model.

5.1. Evaluation
5.1.1. Data

We evaluate our approach on the dataset provided by
Decorte et al. [13]. Their work built upon the SkillSpan
dataset[7], a publicly available dataset focused on the de-
tection of text spans containing the mention of either skills
or knowledge, which are two sub-categories of skills as
broadly defined within the ESCO framework. Using the
extracted spans, Decorte et al. manually assigned ESCO
skills to the extracted spans in order to create a dataset
of spans annotated with the matching ESCO skill(s). To
the best of our knowledge, this represents the best effort
at creating an evaluation dataset using the full extent of
ESCO’s fine-grained approach rather than approximations
or groupings. We use the validation set provided to tweak
our prompts and evaluate our models on the test set.

The data contains two distinct subsets, TECH, which
focuses on data extracted from jobs within the tech sector,
and HOUSE, containing more generalist jobs. We report
results for each set separately, following the literature.

Both subsets contain a list of skills that were identified
within a given span by human annotators.



House Tech
MRR RP@1 RP@5 RP@10 MRR RP@1 RP@5 RP@10

Decorte et al. [13] (best approach) 0.299 N/A 30.82 38.69 0.339 N/A 31.71 39.19
Classifiers (no rerank) 0.326 27.20 37.60 46.47 0.299 27.16 33.41 39.86
Similarity (no rerank) 0.355 26.44 35.22 43.73 0.405 32.84 49.67 58.66
GPT3.5 Re-ranking
+Classifier 0.232 18.32 24.10 27.94 0.279 21.95 29.30 32.48
+Similarity 0.369 29.39 34.40 38.93 0.413 35.01 43.26 47.15
+Both 0.372 27.02 32.93 38.68 0.369 29.67 37.55 43.24
+Both + Python 0.427 36.92 43.57 51.44 0.488 40.53 52.50 59.75
GPT4 Re-ranking
+Classifier 0.446 37.16 48.40 53.44 0.442 39.10 46.77 51.70
+Similarity 0.467 36.40 48.35 54.52 0.481 40.82 54.15 62.71
+Both 0.507 42.91 56.67 60.09 0.512 45.67 59.47 64.03
+Both + Python 0.495 40.70 53.34 61.02 0.537 46.52 61.50 68.94

Table 1.: Results for the various skills matching approaches. Best results within a category in italicised bold, best
overall results in bold

5.1.2. Metrics

As the authors introducing the dataset note [13], it is
highly unlikely for human annotation to be fully exhaus-
tive given the wealth of label, as such, the aim of this task
is to extract as many labels as possible, without penal-
ising the model for "near misses", which could still be
appropriate labels. We thus follow their lead and report
the macro-averaged R-Precision@k (RP@k), which is
particularly well-suited to evaluated extreme multilabel
classification tasks such as this one [34, 13] as well as the
Mean Reciprocal Rank (MRR) of the highest ranked
correct label as a further indication of ranking quality.

6. Results and Discussions
The results of our experiments are presented in in Table
1. We report the performance of the full pipeline, with
both GPT 3.5 and GPT 4 re-ranking, as well as the pre-
vious state-of-the-art performance obtained by Decorte
et al. in the paper introducing the dataset [13]. We also
report the results of both our Classifier and Similarity
approaches without the re-ranking step, both to showcase
the performance obtained via the use of LLM-generated
training data and to serve as a baseline for the re-ranking
approaches.

We notice that, on their own, both of these no-reranking
approaches achieve competitive performance against pre-
vious methods, with the similarity approach marginally
outperforming the classifier one on the House dataset but
performing noticeably worse on the Tech one. These
results are encouraging, as they require no real-world
training data and are extremely fast at inference-time, re-
quiring only simple computations. Their RP@k scales
particularly well with higher k values, highlighting their

ability to propose a number of correct labels but not rank-
ing them optimally.

GPT-4 reranking results in considerable improvements
over all non-reranked methods, strongly outperforming all
other methods in all approaches and the best-performing
variant reaching an RP@10 of 61.02 on the House dataset
and 68.94 on the 68.94, a respective improvement of
22.33 and 29.75 percentage points over the previous
best approach and 14.55 and 10.28 over our best non-
reranked methods. We notice that in all cases, the perfor-
mance obtained by combining potential skills generated
by both the classifier and the similarity approaches is no-
ticeably stronger than when using only one method of
generating candidates. However, when using a single
method of generating potential candidates, we notice that
the similarity-based approach tends to outperforms the
classifier-based approach on both datasets, especially on
the House dataset.

The performance of GPT-3.5 re-ranking is more mixed.
With natural language prompting, its performance is an
overall downgrade over the non-reranked approaches. Un-
like GPT-4, we also notice that combining both methods
of potential skill generation does not systematically im-
prove performance, especially on the Tech dataset where
using only similarity-based entries resulted in overall
stronger results. When using only the classifiers-based
candidates, we notice that the GPT-3.5 ranking actually
decreases performance. One of the noticeable reasons for
this weaker performance is GPT-3.5’s seemingly weaker
ability to follow guidelines: despite our experiments in
modifying the model prompt, it would frequently "hallu-
cinate" skills whose wording was directly inspired from
the target span, and ranking them higher than the skills
provided.

For both GPT variants, we notice strong performance



with the Python prompt variation, where we explicitly re-
quest that the model output is a Python function returning
the ranked list of skills. In the case of GPT-4, the Python
variant significantly outperforms natural language prompt-
ing on the Tech dataset, but performs slightly worse on
House for all metrics but RP@10. For GPT-3.5, however,
Python prompting nearly entirely eliminates the problem
of hallucinating skills, and greatly improves the perfor-
mance across all metrics on both datasets. This appears
to suggest that framing the problem as a programming
problem, which are frequently used to train LLMs, helps
ground reasoning and improve performance in re-ranking
tasks in a way natural language prompt engineering can-
not, although more experiments are needed to confirm
this.

Overall, the use of LLM-generated training data
out-performs the state-of-the-art distant supervision ap-
proaches, and that zero-shot LLM re-ranking further in-
creases performance, considerably outperforming all pre-
vious approaches.

7. Limitations and Future Work
While our work shows very strong potential for LLMs
in both generating training data and improving inference-
time predictions for skills matching, we believe that there
are three key limitations to our work that should be ex-
plored in future work.

Broader Scope We focus on a small, focused dataset
which has previously been explored in the literature. We
believe that our approach is likely to generalise well to
both other taxonomies and different datasets relying on
ESCO. We believe future work should explore building
upon this method to explore more data sources and evalu-
ation approaches.

Representation Types Our study explores only the use
of e5 [23] embeddings, due to their very strong out-of-
the-box performance. However, these embeddings are
general domain representations and are only one approach
among many. We believe future work exploring different
approaches to representation could yield better results and
valuable insight. Notably, further exploring techniques
common within the field of information retrieval, utilising
powerful cross-encoders such as ColBERT, and combin-
ing deep-learning based forms of representations with
simpler but powerful approaches such as tf-idf capturing
different kinds of information could prove very valuable.

LLMs Used This work uses the GPT family of model,
and more specifically, GPT-4. These models are gated
behind APIs and their weights are not publicly available.
While they perform well, future work should explore the
applicability of open-source LLMs, such as Falcon [28],
as well as look for more efficient approaches. Addition-
ally, we intend to explore if using a more diverse set of

generative models, trained on different datasets, could im-
prove our synthetic training data generation by generating
more semantically varied examples.

Domain-Specific Models Our approach focuses on the
use of general domain model, with no further training
to adapt them to the language used within job postings
specifically. While we believe that this kind of informa-
tion is present within the training corpora of the large
language models we use, we believe that better targeted
models could facilitate the development of more efficient
approaches as mentioned above. Notably, models such
as JobBERT [35] and ESCOXLM-R [5] have shown the
potential of domain-specific fine-tuning on existing tasks.
Meanwhile, the LLM literature highlights how consider-
ably smaller language models, with an order of magni-
tude fewer parameters than GPT-3, can reach competitive
performance through fine-tuning on small but very high
quality datasets [36, 37].

Potential Skills Generation Our experiments indicate
that varying the number of potential skills given to GPT-4
does not have a major impact, if any, on its ranking perfor-
mance. However, we did not extensively experiment with
different ways of generating the potential skills list, and
the impact that prompt modifications, such as different
ordering or indicating the source or probability given to a
label by the initial classifier would have. Additionally, we
conducted only very moderate experimentation in optimis-
ing the hyper-parameters of our classifier-based candidate
generation (as described in Appendix B) or with alternate
ways of computing similarity, such as using SVM-based
retrievers [38]. We plan to explore these optimisations in
future work.

Impact on Recommender Systems While out of the
scope of this study, one of the key goals of better job/skill
matching is facilitating the use of recommender systems
to highlight good matches between jobseekers and job
postings, thus contributing to alleviating the job/skill mis-
match [39]. Our early results in using the output of the
pipeline introduced in this paper have shown promising
results, and we intend to further explore the best use of
this skills extraction pipeline within end-to-end job rec-
ommender systems in future work.

8. Conclusion
In this work, we have proposed a novel end-to-end zero-
shot pipeline for skills matching against the ESCO taxon-
omy using Large Language Models (LLMs). We have
shown that LLMs can generate high-quality synthetic
training data to improve candidate generation, outper-
forming existing approaches without needing any non-
synthetic training data. We have also demonstrated that
state-of-the-art LLMs can act as strong zero-shot re-
rankers as the final step of the skill matching pipeline,



resulting in another large performance improvement.
Our experiments also show that framing the re-ranking

task as a mock Python programming problem results in
significant performance gains, especially for less capable
models. We believe that this framing helps the models
better follow the task instructions in re-ranking contexts,
especially when working with less powerful models.

Overall, our work highlights the strong potential for
Large Language Models for the low-resource context of
working with the ESCO taxonomy, through leveraging the
limited information present in the taxonomy to guide the
generation of targeted synthetic data, as well as through
zero-shot application of their capabilities. While our ex-
periments have focused on a single dataset and taxonomy,
namely ESCO, we believe that our approach holds poten-
tial to support further work in automated understanding
of the job market at scale, and we release the prompts we
have used in order to support these efforts.
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A. Prompts

A.1. Training Data Generation
You are the leading AI Writer at a large, multinational
HR agency. You are considered as the world’s best expert
at expressing required skills and knowledge in a variety
of clear ways. You are particularly proficient with the
ESCO Occupation and Skills framework. As you are
widely lauded for your job posting writing ability, you
will assist the user in all job-posting, job requirements and
occupational skills related tasks.

You work in collaboration with ESCO to gather rigid
standards for job postings. Given a list of ESCO skills
and knowledges, you’re asked to provide forty examples
that could be found in a job ad and refer to the skill or
knowledge component. You may be given a skill family
to help you disambiguate if the skill name could refer
to multiple things. Ensure that your examples are well
written and could be found in real job advertisement.

Write a variety of different sentences and ensure your
examples are well diversified. Use a variety of styles.
Write examples using both shorter and longer sentences,
as well as examples using short paragraphs of a few sen-
tences, where sometimes only one is directly relevant to
the skill. You’re trying to provide a representative sample
of the many, many ways real job postings would evoke a
skill.

At least {FIVE for tech skills, ZERO for language skills,
80% (THIRTY-TWO)} of your examples must not contain
an explicit reference to the skill and must thus not con-
tain the given skill string. Extra Information/Alternative
Names (you may discard this information if irrelevant):
{ALTERNATE NAMES IN THE ESCO DATABASE}
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Avoid explicitly using the wording of this extra informa-
tion in your examples. Skill: {target}"""

A.2. Reranking
Instructions: You are given an extract from a job posting.
As an AI job and skills expert, you need to assist in what-
ever task is requested of you. I will give you a sentence
referring to a skill extracted from a job posting, as well as
a list of potential skill labels. You are asked to extract and
rank the likely skills from the candidates list into a ranked
list of 10.

It is possible that none match, in which case you will
say NO_LABEL. You must either use one from the list or
NO_LABEL.

You may not use any label not provided in the example
list. If you use NO_LABEL, do not assign any other label.

You will rank the top 10 most likely labels from the
candidates, and provide an explanation as to why they are
picked and ranked where they are.

That means that if two labels are applicable, but one is
much broader, you should pick the less broad one slightly
above the broader one. For example, a skill related to
specific kind of algorithm (e.g. forecasting) should always
rank higher than the "algorithms" skill.

Again, you may never use a skill not provided in the
potential skills list.

First, acknowledge and quickly summarise the instruc-
tions.

Mocked LLM Message: I understand the instructions.
I will be given a sentence referring to a skill from a job
posting and a list of potential skill labels. My task is to
extract and rank the top 10 most likely skills from the
candidates list, provide an explanation for my choices,
and prioritize specific skills over broader ones. If no label
matches, I will use NO_LABEL and not assign any other
label. I will only use the provided labels in the list.

Query Message: Great, let’s go :)!
Potential skills: {{potential_skills}}
Extract: {{text_extract}}
Provide your 10 most likely labels.Please provide a

quick explanation for your ranking.

A.3. Python Reranking
Instructions: You are given an extract from a job posting.
As an AI job and skills expert, you need to assist in what-
ever task is requested of you. I will give you a sentence
referring to a skill extracted from a job posting, as well as
a list of potential skill labels. You are asked to extract and
rank the likely skills from the candidates list into a ranked
list of 10.

It is possible that none match, in which case you will
say NO_LABEL. You must either use one from the list or
NO_LABEL.

You may not use any label not provided in the example
list. If you use NO_LABEL, do not assign any other label.

You will rank the top 10 most likely labels from the
candidates, and provide an explanation as to why they are
picked and ranked where they are.

That means that if two labels are applicable, but one is
much broader, you should pick the less broad one slightly
above the broader one. For example, a skill related to
specific kind of algorithm (e.g. forecasting) should always
rank higher than the "algorithms" skill.

Again, you may never use a skill not provided in the
potential skills list.

You will answer not by directly answering, but by
writing a python function that will output your ordered
list. Your python function can use any heuristic you
wish to reach your desired result and accommodate
your reasoning.

First, acknowledge and quickly summarise the instruc-
tions.

Mocked LLM Message: The task is to create a
Python function that will rank the top 10 most likely
skills from a list of potential skills based on a given
sentence from a job posting. The function should only
use the provided list of potential skills and may use
the NO_LABEL option if none of the skills match.
The ranking should be based on the specificity of the
skill and the explanation for the ranking should be
provided.

Query Message: Great, let’s go :)!
Potential skills: {{potential_skills}}
Extract: {{text_extract}}
Provide your 10 most likely labels.Please provide a

quick explanation for your ranking. You must provide
a Python function. The python function must be in
a python codeblock. The function must be named
‘rank_skills‘. The Python Function you create should
never explicitely use the extract text itself, it should just
return the ranking. The extract text is only provided
for your reasoning so you can build the appropriate
function. You don’t need to include the full list of
potential skills in your answer

B. Classifier Parameters
The individual logistic regression classifiers are imple-
mented using the scikit-learn library [40]. We set the
inverse regularisation parameter, C to 0.1, as we have low
confidence in our data being representative of real-world
data, set a maximum iteration limit of 10 000 with a toler-
ance of 0.00001. We also set the class weight to be used
by the classifier to the balanced setting, meaning that posi-
tive examples will be weighed twice as heavily as negative
examples by the loss function, as our negative sampling
strategy involves two negative examples per positive one.
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