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Abstract
Extracting information from résumés is typically formulated as a two-stage problem, where the document is first segmented
into sections and then each section is processed individually to extract the target entities. Instead, we cast the whole problem
as sequence labeling in two levels —lines and tokens— and study model architectures for solving both tasks simultaneously.
We build high-quality résumé parsing corpora in English, French, Chinese, Spanish, German, Portuguese, and Swedish.
Based on these corpora, we present experimental results that demonstrate the effectiveness of the proposed models for the
information extraction task, outperforming approaches introduced in previous work. We conduct an ablation study of the
proposed architectures. We also analyze both model performance and resource efficiency, and describe the trade-offs for
model deployment in the context of a production environment.

Keywords
Sequence labeling, deep learning, résumé parsing

1. Introduction
Résumé parsing has become increasingly important in
the context of digitalized recruitment processes. It in-
volves the extraction of relevant information about a
candidate from their résumé document into a structured
data model. The extracted information, when integrated
with downstream recommender systems, can in turn help
candidates and recruiters optimize their search.

Résumés1 exhibit significant diversity in their format
and in their use of language due to differences in the back-
ground, industry, and location of the candidates [1]. But
despite their unstructured nature, these documents are
typically organized into sections. Each one of these text
blocks contains important details about the candidate,
such as their personal information, education history,
previous work experience, and professional skills. Addi-
tionally, some sections depict a chronological progression
(e.g. work experience, education), and are naturally fur-
ther divided into groups. Within particular sections and
groups are different concepts or entities that are relevant
to the recruitment process. For example, the full name
of the candidate, their address, and their phone number
are typically present in the contact information section.
Each group within the work experience section usually
includes a period, a job title, and the employer’s name.

Since résumé parsing occurs early on in the digitalized
recruitment process pipeline, its accuracy has a signif-
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1We use the term résumé synonymously with curriculum vitæ (CV).

icant effect on that of the downstream recommender
systems. However, the aforementioned diversity in the
use of language in résumés makes the parsing problem
challenging for pattern matching or other classical artifi-
cial intelligence (AI) approaches. Effective solutions for
this task, therefore, require the use of machine learning
techniques.

Existing industry-scale solutions for résumé parsing do
not make public detailed information about their systems.
On the other hand, previous academic research in this
domain focuses on constrained scenarios that are limited
in scope, in the complexity of the target label scheme, or
in terms of the size and quality of the annotated datasets.
Moreover, these works address the problem in two or
more stages. In the first stage, they segment the résumé
into sections and groups [1, 2, 3]. Since résumés are
long text documents, this is generally approached as text
classification of independent lines without document-
level context. The second stage uses a section-specific
sequence labeling model to extract the target entities
from the text of each section.

In this work, we propose a joint model that labels the
full document as a whole. This is an unusual setting in
academic literature for sequence labeling, as résumés are
long text sequences and the set of labels is relatively big.
We show that the proposed system is not only efficient
and convenient from an engineering point of view, but
it is also competitive with the two-stage alternative. We
compare it to previous approaches and we also study sev-
eral design-decisions of our system in terms of their effect
on accuracy as well as in time and memory efficiency.
We share experimental observations on résumés in seven
languages and provide insight into the deployment of
this system in production environments. In summary,
the main contributions of this paper are:
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• Casting the task of résumé parsing as hierarchical
sequence labeling, with line-level and token-level
objectives, and presenting an efficient résumé
parsing architecture for simultaneous labeling
at both levels. We propose two variants of this
model: one optimized for latency and the other
optimized for performance.

• A comprehensive set of experiments on résumé
parsing corpora in English, French, Chinese,
Spanish, German, Portuguese, and Swedish, each
covering diverse industries and locations. We
share our experience in the process of developing
such annotations. These experiments compare
our proposed system to previous approaches and
include an extensive ablation study, examining
various design choices of the architecture.

• Insights into the process of deploying this model
in a global-scale production environment, where
candidates and recruiters from more than 150
countries use it to parse over 2 million résumés
per month in all these languages. We analyze the
trade-off between latency and performance for
the two variants of the model we propose.

Our empirical study suggests that the proposed hi-
erarchical sequence labeling model can parse résumés
effectively and outperform previous work, even with a
task definition that involves labeling significantly large
text sequences and a relatively large number of entity
labels.

2. Related Work
Our work builds upon prior research on deep learning
for sequence labeling, specifically those applying neu-
ral networks in combination with Conditional Random
Fields (CRFs) to various sequence labeling tasks. Huang
et al. (2015) investigated an architecture based on Bidirec-
tional Recurrent Neural Networks (BiRNNs) and CRFs [4].
They use bothword embeddings and handcrafted features
as initial representations. Lample et al. (2016) extended
this architecture by introducing character-based repre-
sentations of tokens as a third source of information for
the initial features [5]. An alternative character-based
approach was proposed by Akbik et al. (2018), which uses
a BiRNN over the character sequence to extract contextu-
alized representations that are then fed to a token-level
BiRNN+CRF [6]. In addition, Devlin et al. (2019) intro-
duce a simple Transformer-based approach that avoids
the utilization of CRF. This consists of a pre-trained BERT
encoder, which is fine-tuned, followed by a linear clas-
sification layer applied to the representation of each to-
ken [7]. We refer interested readers to the surveys by

Yadav and Bethard (2018) and Li et al. (2022) for a more
comprehensive review of deep neural networks for se-
quence labeling [8, 9].

Prior work on parsing résumés usually divides the
problem into two tasks, and tackles each separately [1,
2, 3, 10, 11]. The résumé is first segmented into sections
and groups, and then section-specific sequence labeling
models are applied to extract target entities. The early
work by Tosik et al. (2015) focuses on the second task
only, as they experiment with already-segmented Ger-
man résumés [1]. They train named entity recognition
models for the contact information and work experience
sections, each with a small set of labels. The architecture
they apply uses word embeddings as direct features for
the CRF.

Zu et al. (2019) use a large set of English résumés col-
lected from a single Chinese job board to experiment
with several architectures for each of the two stages [2].
For segmentation, they classify each line independently
(without document context). Then to extract entities,
they train different models for each section type. The
input to these sequence labeling models is the text of
each independent line. While for the line classification
task they use manually annotated samples, the sequence
labeling models are trained using automatic annotations
based on gazetteers and dictionaries.

Barducci et al. (2022) work with Italian résumés. They
first segment the résumé using a pattern-matching ap-
proach that relies on a language- and country-specific
dictionary of keywords [3]. After this, they train inde-
pendent sequence labeling models for each section type.
The architecture they use for the sequence labeling com-
ponent is based on the approach described above that
uses BERT [7] with a classification layer on top.

Finally, Pinzon et al. (2020) work with a small corpus of
English résumés [12]. They bypass the segmentation task
(ignoring sections and groups) and propose a model that
directly extracts entities from the résumé text. They use a
BiRNN+CRF model for the token-level sequence labeling
task. Among the related work we examined, this is the
only one that made their dataset public. Nevertheless,
a manual examination of the corpus led us to conclude
that the sample is far from representative of real-world
English résumés and that the labeling scheme they use
is limited and inadequate for our scope.

We extend the previous work by exploring a joined
architecture that predicts labels for both lines and tokens,
treating each as a sequence labeling task. Furthermore,
as in Pinzon et al. (2020) [12], we unify the extraction of
entities for any section. This setup is challenging, since
résumés are unusually long compared to typical Infor-
mation Extraction tasks, and the set of labels for entities
is also bigger. But the advantage is the improvement of
efficiency in terms of execution time and memory usage,
and the simplification of the engineering effort since only



one model needs to be trained, deployed, and maintained.
Our work is also the first one to study résumé pars-

ing in seven languages, with large corpora of résumés
selected from many different industry sectors, and using
high-quality manual annotations for both the line and
token tasks.

3. Task Description
We cast résumé parsing as a hierarchical sequence la-
beling problem, with two levels: the line-level and the
token-level. These two tasks can be tackled either se-
quentially or in parallel.

For the first, we view the résumé as a sequence of
lines and infer the per-line labels that belong to different
section and group types. This is a generalization of the
task definition used in previous work, where the label
(class) for each line is inferred independent of information
about the text or the predicted labels of other lines. We
assume that section and group boundaries are always
placed at the end of a line, which is the case in all the
résumés we came across during this project. The label
set for this part of the task includes a total of 18 sections
and groups, which are listed in Appendix A.1.

For the second level, we view the résumé as a long
sequence of tokens that includes all the tokens from every
line concatenated together. We infer the per-token labels
that correspond to the different entities. The label set
for this part of the task includes 17 entities, which are in
turn listed in Appendix A.2.

The scope of this paper revolves around the extraction
task and therefore we do not focus on the conversion of
the original résumé (e.g. a docx or pdf file) into plain text
format. Rather, the systems studied in this work assume
textual input.

4. Corpora
We built résumé parsing corpora in English, French, Chi-
nese, Spanish, German, Portuguese, and Swedish. Some
statistics on the corpora are reported in Table 1. For each
of these languages, résuméswere randomly sampled from
public job boards, covering diverse locations and indus-
tries. For all but Chinese, we controlled the sampling
process in order to enforce diversity in locations. For ex-
ample, although the English corpus is biased toward the
USA, there is a fraction of résumés from other English-
speaking countries including the UK, Ireland, Australia,
New Zealand, South Africa, and India. Although we did
not control for industry variability, we observe a high
level of diversity in the selected collections. We then
used third-party software to convert into plain text the
original files, which came in varied formats such as pdf,
doc, and docx.

Table 1
The number of résumés and the average number of lines and
tokens per résumé for each language corpus.

Corpus Résumés Lines Tokens
English 1196 73.3 834.1
French 1044 54.4 539.1
Chinese 1023 50.6 664.8
Spanish 846 68.6 667.4
German 738 80.5 608.6
Portuguese 628 73.1 773.6
Swedish 519 74.5 632.0

Since this effort is aimed at building a real-world ap-
plication, annotation quality is highly important. For
that purpose, we implemented a custom web-based an-
notation tool that allows the user to annotate section and
group labels for each line of a résumé, and to annotate
entity labels for each arbitrary span of characters.

We developed the annotation guidelines by starting
with a rough definition for each label and performing
exploratory annotations on a small set of English résumés
—a mini-corpus that we later used for onboarding the
annotators. The guidelines were then iteratively refined
for the whole duration of the project, achieving a stable
and rigorous version at the end. In Appendix A we define
the section, group, and entity objectives covered in our
corpora, and we provide a screenshot of the annotation
tool user interface for reference.

Each language corpus was managed as an independent
annotation project. We recruited 2 or 3 annotators, who
are native speakers of the target language and without
specifically seeking domain expertise, through an online
freelance marketplace. The annotators did not communi-
cate with each other during the process, maintaining the
independence of the multiple annotations. Before start-
ing the annotations on the target corpus, we asked each
annotator to carefully read the guidelines, and annotate
the onboarding English mini-corpus. After reviewing
and providing feedback, the annotator was instructed to
annotate all the résumés in the target corpus.

The estimated inter-annotator agreement (IAA) for
the corpus in each language, computed as suggested by
Brandsen et al. (2020) [13] in terms of 𝐹1, ranges from
84.23 to 94.35% and the median is 89.07%. Finally, we ad-
judicated the independent annotations in order to obtain
the gold standard annotations. This process involved
resolving any conflicting decisions made by individual
annotators through the majority voting method. In cases
where a majority decision was not attainable, the adju-
dicator was instructed to review the decisions of each
annotator and apply their own criteria to arrive at a final
decision.
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(c) Multi-task variant for sequence labeling on both lines and tokens.

Figure 1: Model variants studied in this work. Blue architecture blocks denote initial features (which are pre-trained, and
held fixed during our experiments), while yellow and red blocks denote layers that output a sequence of elements for each
token or line.

5. Model Architecture and
Training

The models we use in this work are based on the
BiRNN+CRF architecture. Initial features are first ex-
tracted for each token, then combined through bidirec-
tional recurrent layers, and finally passed through a CRF
layer to predict the labels. Unless specified otherwise,
the input to the model is the entire résumé text after ap-
plying tokenization. We study two design-decisions: (1)
the choice for initial features, and (2) separate models for
predicting line and token labels vs. a multi-task model
that predicts both jointly.
Initial features. We explore two alternatives:

(a) A combination of FastText [14] word embeddings
and handcrafted features, which are detailed in
Appendix B.

(b) Token representations obtained from the encoder
component of a pre-trained T5 [15] model (or an
mT5 [16], depending on the language) without
fine-tuning.

The T5 models are based on the Transformer [17] ar-
chitecture. For this second case, each line is encoded
individually2, and then the token representations for
2Note that résumés are long text sequences, usually longer than 512
tokens (see Table 1).

each line are concatenated to obtain the input sequence
for the BiRNN+CRF architecture. This is visually de-
scribed in Figure 2. Preliminary experiments, which are
not presented here because of space constraints, showed
that avoiding the BiRNN component for this last archi-
tecture, i.e. applying CRF directly on the output of the
Transformer-based features, obtains markedly worse re-
sults. This is because the two layers capture complemen-
tary aspects of the context: the Transformer encodes
tokens by exclusively considering the context of the cur-
rent line, while the BiRNN layer on top contextualizes
across every line. Because of the typical length of a ré-
sumé in terms of tokens, we did not explore encoding
the whole résumé at once with the Transformer encoders
used in this work.
Single-task vs. Multi-task. We experiment with:

(a) Single-task models that perform either line-level
sequence labeling (sections and groups) or token-
level sequence labeling (entities).

(b) Multi-task models that predict labels for both line-
level and token-level tasks simultaneously.

Figure 1 illustrates the model variants. The architec-
ture shown in Figure 1a is a single-task model for line-
level objectives (sections and groups). This architecture
takes as input the complete sequence of tokens in the
résumé and predicts one label for each line. We train
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Figure 2: Detail of the aggregation of token-level representa-
tions into line-level representations (blocks in red), exemplified
with a variant using Transformer-based initial features. The
BiRNN that contextualizes initial token-level features across
every line (blocks in yellow) is needed because a typical ré-
sumé does not fit in the maximum input length of the typical
Transformer models.

this type of model using only the supervision from the
line sequence labeling task. As the diagram shows, a
sequence of token representations is transformed into
a sequence of line representations, such that the output
is expressed in terms of lines, using a pooling operation
inspired by Akbik et al. (2018) [6]. In detail, consider the
input résumé as a long sequence X = (x1,x2, … ,x𝑇) of
𝑇 tokens, partitioned in 𝐿 lines. Each line 𝑗 is a subse-
quence of tokens, starting at x𝑎𝑗 and ending at x𝑏𝑗 . After
extracting the initial features for each token, and feed-
ing these into the token-wise BiRNN layer, we obtain a
sequence of token representations H = (h1,h2, … ,h𝑇),
each consisting of a forward and backward component,
h𝑖 = ⃖⃗h𝑖 ⊕ ⃖⃖h𝑖. We then compute the representation for
each line 𝑗 by concatenating the forward component of
the last token with the backward component of the first
token: r𝑗 = ⃖⃗h𝑏𝑗⊕⃖⃖h𝑎𝑗 . The result is a sequence of line repre-
sentations R = (r1, r2, … , r𝐿), which is in turn processed
by another BiRNN layer. This aggregation mechanism is
depicted in Figure 2.

Figure 1b, on the other hand, shows the single-task
model for token-level objectives (entities). This second
architecture is trained using supervision from the token-
level labels only.

Finally, a multi-task architecture for predicting both
line and token objectives jointly is presented in Figure 1c.
It is trained with both supervision signals simultane-
ously. For this multi-task architecture, the token-level
CRF receives as input the concatenation of: (i) the repre-
sentation of the target token and (ii) the line-level repre-
sentation of the line in which the token occurs. All the
models are implemented using TensorFlow [18].

6. Experiments
We next describe the results of our experiments using the
corpora of Section 4. The main results are summarized in
Table 2. For each language, we use 90% of the documents
for training and report the micro-average 𝐹1 scores (for
the positive labels only) on the held-out 10%3. The re-
sults compare the two model architectures discussed in
Section 5: Single-task and Multi-task, and for each archi-
tecture, the two alternatives for initial features: FastText
and Transformer-based T5.

The 𝐹1 scores for the token sequence labeling task (pre-
dicting entities) are reported in Table 2a. Those include
the results for the two single-task models that act only
on the token-level task, as well as the two multi-task
models. The 𝐹1 scores for the line sequence labeling task
(sections and groups) are shown in Table 2b, again for
the two single-task models that act only on the line-level
task, and the two multi-task models4.

We make some observations. Comparing row 1 with
row 3, and also row 2 with row 4, we see that using
Transformer-based embeddings yields an improvement
of 2.5% in the goals 𝐹1 on English, and a smaller improve-
ment on French, Spanish, Chinese, and Portuguese, but
is worse on German and Swedish5. FastText initial fea-
tures, on the other hand, perform as well or better than
Transformer-based features in the line-level task. It is
important to consider, though, that the improved error
rate of the Transformer-based model comes at a higher
computational cost during inference. This consideration
is especially important when the model is deployed in
a high-load commercial application where latency is a
crucial factor.

A second important observation is that the multi-task
models generally outperform their single-task counter-
parts for the token sequence labeling task. Additionally,
the multi-task model has a significant advantage in a
commercial setting. From an operational perspective, the
training, testing, integration, and maintenance of a single
model is simpler and cheaper than for two models.

Section-specific Models

The simplification of model development and mainte-
nance is even more significant when we contrast the
unified multi-task model described above with the typi-
cal two-stage approach for résumé parsing [1, 2, 3]. The
latter requires training and maintaining several models:
one for the initial line segmentation task, and then one

3Due to the relatively small size of the corpora, we opted against
using a three-way split involving training, validation, and test sets.

4Row 2 of both sub-tables evaluates the same underlying model (but
for different tasks), and similarly for row 4

5Swedish is an outlier, where the Transformer-based models are
markedly less accurate. This might be due to the small size of
Swedish data used for pre-training mT5.



Table 2
Performance of the model variants for résumé parsing in seven languages, expressed as micro-average 𝐹1 score in percentage
points for the positive labels in the two hierarchical levels of the sequence labeling task: token and lines objectives. For each
variant, we report the average of three independent replications using different random seeds. (The single-task model for
tokens using FastText features is equivalent to the one proposed by Pinzon et al. (2020) [12].)

Model English French Chinese Spanish German Portuguese Swedish
FastText features
Single-task (only tokens) 88.24 86.65 92.30 88.93 86.97 89.14 89.07
Multi-task (lines and tokens) 89.03 86.90 92.66 88.77 87.43 89.14 89.14

Transformer features
Single-task (only tokens) 90.78 88.37 92.35 89.66 85.81 89.49 80.98
Multi-task (lines and tokens) 90.94 88.65 92.61 90.24 86.13 90.05 81.15

(a) Results for the token sequence labeling task (entities).

Model English French Chinese Spanish German Portuguese Swedish
FastText features
Single-task (only lines) 92.26 94.47 91.42 94.30 92.47 91.61 82.60
Multi-task (lines and tokens) 92.24 94.30 91.54 93.75 91.55 90.58 83.14

Transformer features
Single-task (only lines) 90.95 84.99 85.76 81.32 87.09 89.02 58.37
Multi-task (lines and tokens) 92.62 92.21 89.95 92.11 87.02 90.96 90.38

(b) Results for the line sequence labeling task (sections and groups).

for entity extraction within each specific section type
(e.g. one single-task model for the entities related to con-
tact information, another single-task model for entities
related to work experience, etc). By contrast, the unified
multi-task model we proposed is used to label all the
entities across the whole résumé at once, regardless of
the section type. This simplification, however, comes at a
cost of increased error rate since a section-specific model
has to decide among a much smaller set of labels, and
receives a shorter text sequence as input.

In this part, we attempt to quantify such degradation.
We train section-specific models, i.e. individual models,
for the entities for three of the section types: contact infor-
mation, work experience, and education. Each is trained
and evaluated only on the corresponding segment of
the résumés. Segmentation is performed using the gold
standard annotations for sections, in order to focus our
measurements on the token-level task. In Table 3, we re-
port the micro-average 𝐹1 scores grouped by the relevant
sections, comparing the performance of each section-
specific model to the proposed unified, multi-task model.
Results are reported for English, French, and Chinese.

We show a loss in 𝐹1 ranging from 1% to 5% depending
on the section and language. Since the section-specific
models benefit from the gold standard segmentation of
sections, the results should be considered as an upper
bound of the degradation in error rate. A real-world sys-
tem implemented according to the two-stage approach
should expect a compound error carried from the first

stage, e.g. the error observed for the Single-task models
presented in Table 2b. The aim is to provide the prac-
titioner with a quantifiable assessment of the trade-off
between engineering simplicity and task accuracy.

Analysis and Details on Deployment

The results already suggest that the Transformer-based
initial features perform generally better for the token-
level sequence labeling task. Furthermore, they do not
need language-specific handcrafted features, so they can
be readily applied to new languages. On the other hand,
the alternative set of initial features (the combination
of word embeddings and handcrafted features) performs
better in the line sequence labeling task for detecting
section and group labels.

However, in terms of efficiency, our experiments re-
veal that using word embedding initial features leads
to a considerable improvement in time-efficiency dur-
ing inference, when compared to the Transformer-based
features. The inference time for the multi-task model
was measured under both feature sets. On a bare-metal
server with a single GPU6, we observed a speedup of 7
of the FastText models compared to Transformer-based
features. Furthermore, when utilizing CPU-only hard-
ware7, the speedup increased substantially to 90. As an

6NVIDIA Tesla T4 and Intel® Xeon® Platinum 8259CL CPU @
2.50GHz.

7Intel® Xeon® CPU E5-2630 v2 @ 2.60GHz



Table 3
Comparison between the multi-task joint model and the single-task section-specific models. The latter uses as input the oracle
segmentation of the résumé. Results are in micro-average 𝐹1 scores for the positive labels, aggregated by entity type of each
section: contact information (Cont), work experience (Work), and education (Edu). In each case, the average result of three
independent replications using different random seeds is reported.

Model English French Chinese
Cont. Work Edu. Cont. Work Edu. Cont. Work Edu.

FastText features
Multi-task (lines and tokens) 93.43 88.12 83.35 96.29 83.96 85.95 97.35 89.93 93.33
Section-specific (only tokens) 95.79 90.62 88.33 95.90 86.30 88.77 98.31 92.21 94.79

Transformer features
Multi-task (lines and tokens) 95.44 90.32 86.30 95.83 86.98 90.06 95.92 89.36 94.15
Section-specific (only tokens) 94.19 91.55 88.49 94.77 86.22 90.50 96.15 92.64 95.33

example, we note that the multi-task model using Fast-
Text initial features, deployed on CPU-only servers via
TensorFlow Serving [19], yields a latency of 450 ms per
résumé without batch processing.

Ablations and Comparison with Previous Work

Table 4 presents an ablation study of the proposed archi-
tectures in order to empirically support our architectural
design choices. Furthermore, some of the ablated vari-
ants are re-implementations of systems proposed in pre-
vious work and thus act as baselines for the experiments
presented above in this section.

The first group involves variants that use, as initial fea-
tures, the combination of FastText word embeddings and
handcrafted features. Variant ① is the multi-task model
presented in Table 2a. The first ablation, variant ②, in-
volves replacing the top-wise CRF layer with a Softmax
layer. Both variants have comparable performance, with
a small degradation when Softmax is used. The next abla-
tion, variant ③, removes the BiRNN layer and thus makes
the CRF predict the token labels using the initial features
directly. This is a re-implementation of the system pro-
posed by Tosik et al. (2015) [1], although they did not
share their handcrafted features (and therefore we use
those described in Appendix B). This other ablated vari-
ant has a substantial degradation in performance with
respect to our proposed model, suggesting that the role
played by the BiRNN layer is critical.

The second group involves variants that apply frozen
Transformers to each line individually, and then concate-
nate every line to obtain the initial features (this is visu-
ally described in Figure 2). Variant ④ is the multi-task
model presented in Table 2a. The first ablation, vari-
ant ⑤, involves replacing the T5 (or mT5) encoder with
a BERT (or mBERT) encoder [7]. We observe an appre-
ciable degradation in performance, suggesting that the
pre-trained T5 family of models produces representations
that are more useful for our task. Variant ⑥ and ⑦ use
T5 and BERT, respectively, but omit the recurrent layer.

Both result in a significant degradation of performance
with respect to the models including the BiRNN, again
showing the importance of the BiRNN for this task.

The third group involves variants that also apply Trans-
formers to each individual line, but this time we allow
for the Transformer encoder to be fine-tuned with the
task supervision. In this case, we do not employ a BiRNN
for contextualizing token representations across lines
because this would require a much more challenging op-
timization procedure8 and thus each line is processed
independently. Variant ⑧ involves a BERT encoder (be-
ing fine-tuned) that computes representations for each
token in the line, and uses a CRF layer to predict their la-
bels. When compared to our proposed model (variant ④),
we observe a significant drop in performance, suggesting
that the contextualization across different lines in the
résumé is the critical factor for the performance of the
system. Interestingly, when variant ⑧ is compared to
variant ⑦ —identical, except for fine-tuning— we do see
an improvement in performance, suggesting that without
inter-line contextualization, fine-tuning is indeed helpful.

Variant ⑨ is similar to the previous variant but re-
places the CRF layer with Softmax. This model is a
re-implementation of the NER system presented by De-
vlin et al. (2019) [7] and it is also equivalent to the system
used for résumé parsing by Barducci et al. (2022) [3].
We can observe that the performance is similar to the
previous one (although CRF seems to achieve slightly
better results). Lastly, variant ⑩ is included as a con-
trol, in which we fine-tune the encoder component of T5
and predict labels using a Softmax on top of the Trans-
former representations for each token. Again, T5 pro-
vides slightly better results with respect to the equivalent
BERT variant.

In summary, the ablation experiments suggest that the
BiRNN layer, which contextualizes the token representa-
tions across the entire résumé, has a significant impact
8A naïve implementation for this procedure would require keeping
in memory as many copies of the Transformer as lines in the target
résumé.



Table 4
Ablation study. Variants are compared in terms of the micro-
average 𝐹1 obtained for the token sequence labeling task. Vari-
ants ① and ④ represent the models discussed in the previous
part of this section. Other model variants depart from either
one of these by changing one aspect at a time. In particular,
variant ③ re-implements the system of Tosik et al. (2015) [1],
and variant ⑨ is equivalent to the architecture proposed by
Devlin et al. (2019) [7] for other sequence labeling tasks. IF
denotes initial features. Each result is an average of three in-
dependent replications.

Model variant English French Chinese
FastText initial features
① IF+BiRNN+CRF 89.03 86.90 92.66
② IF+BiRNN+Softmax 88.86 86.53 92.67
③ IF+CRF [1] 65.89 64.68 67.53

Transformer initial features
(frozen)
④ T5+BiRNN+CRF 90.94 88.65 92.61
⑤ BERT+BiRNN+CRF 88.91 86.34 91.79
⑥ T5+CRF 78.65 75.40 76.91
⑦ BERT+CRF 74.70 73.53 81.51

Transformer initial features, linewise
(fine-tuned)
⑧ BERT+CRF 83.55 85.60 86.36
⑨ BERT+Softmax [7, 3] 83.13 85.55 85.95
⑩ T5+Softmax 84.18 85.61 86.58

on the performance. The CRF helps to further improve
the performance but in a smaller amount. The variants
that allow for fine-tuning the Transformer component
outperform their frozen-Transformer equivalents, but
they are in turn outperformed by our proposed solutions
(variants ① and ④).

7. Conclusion
Résumé parsing is an important task for digitalized re-
cruitment processes, and the accuracy of the parsing step
affects downstream recommender systems significantly.

In this work, we study résumé parsing extensively
in seven languages. We formulated it as a sequence
labeling problem in two levels (lines and tokens), and
studied several variants of a unified model that solves
both tasks. We also described the process for develop-
ing high-quality annotated corpora in seven languages.
We showed through experimental results that the pro-
posed models can perform this task effectively despite
the challenges of substantially long input text sequences
and a large number of labels. We observed that the joint
model is more convenient than the typical two-stage so-
lution in terms of resource efficiency and model life-cycle
maintainability, and also found that in some cases the
joint model yields better performance. We provided a

trade-off analysis of the proposed variants and described
challenges for deployment in production environments.
The ablation experiments suggest that the BiRNN layer
contextualizing across the résumé is critical for perfor-
mance, and that the CRF component further provides a
smaller improvement.

Potential directions for future research include the fol-
lowing: using character-based initial features [5, 6] for
the FastText variants, as they can complement word em-
beddings by incorporating information from the surface
form of the text and may even offer the opportunity to
gradually replace handcrafted features; domain-adapting
the Transformer representations with unannotated ré-
sumés, considering the reported effectiveness of this tech-
nique in enhancing downstream task performance [20];
and building multilingual models to improve sample effi-
ciency for low-resource languages. Furthermore, alter-
native Transformer architectures designed specifically
for long input sequences [21, 22] could be used in order
to encode the entire résumé in a single pass, while also
enabling the possibility to fine-tune the encoder.

Limitations
As discussed in Section 4, despite our best efforts to cover
as many locations, industries, and seniority levels, it is
not feasible for résumé parsing corpora with sizes of up
to 1200 résumés to actually contain samples from every
subgroup of the population under study. Therefore, we
would like to highlight that the findings presented in this
work apply specifically to résumés that are similar to
those included in the corpora, and may not generalize
with the same level of accuracy to other résumés be-
longing to combinations of location, industry, and work
experience that were not seen by the model during train-
ing.

Ethics Statement
The system described in this work is intended for pars-
ing résumés of individuals from different backgrounds,
located around the globe. Considering the importance
of inclusivity in this context, we made a great effort to
cover the diversity of the use of language in our cor-
pora with the objective in mind. This helps us to provide
high-quality résumé parsing for individuals from various
industries and locations.

Furthermore, the data used for training and evaluating
ourmodels consist of résumés that contain sensitive infor-
mation from real-world individuals. We have taken the
necessary privacy and security measures for protecting
this information throughout every step of this project.
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A. Details on the Corpus
Annotations

Annotators were provided access to a custom annotation
tool that we developed for this task. In Figure 3 we show
the user interface of this tool, with an example résumé
annotated for sections, groups, and entities.

The annotators were asked to detect and highlight spe-
cific information in résumés written in their language.

They were introduced to the different types of informa-
tion they would be annotating: line annotations include
sections and groups, and text annotations (allowing for
any span of characters in the text) include entities.

The description for every type of annotation label is
included below.

A.1. Labels for Lines
The sequence labeling task at the line-level is intended
to recognize sections and groups within certain sections.
The label set includes a total of 18 different labels.

A.1.1. Sections

We allow the annotators to label lines into the following
sections:

Contact Information Contact and personal information
about the candidate.

Work Experience Information about the candidate’s em-
ployment experience.

Education Information about the candidate’s formal educa-
tion.

Internship Information about the candidate’s internship ex-
perience.

Skills Information about the candidate’s work-related abili-
ties and qualifications.

Languages A description of the language proficiency of the
candidate.

Summary Brief statement intended to display a candidate’s
most compelling abilities and attributes.

Objective Candidate’s work-related goals, usually written
in prose. It emphasizes what the person is looking
for from a job or company.

Achievements It includes content of importance under ti-
tles like Honors, Awards, Accomplishments, Publi-
cations, Licenses and Certifications, etc.

References Contact details of individuals who can speak
about the character, academic work or experience,
and extracurricular achievements of the candidate

Letter Letters embedded in the résumé (frequently cover
letters and reference letters).

For sections, we use IO (inside, outside) format for the
labels. This is motivated by the fact that we assume that
two consecutive lines of the same type of section belong
to the same section element.

A.1.2. Groups

Besides the categories listed above, lines that belong to
sectionsWorkExperience, Education, and Internship
can belong to experience groups. Internally, the tool uses
the IOB (inside, outside, beginning) format for the groups
within each section type. Note that, for example in the
case of the Education section, the label I-edu denotes a
line that is part of the Education section but it’s not part
of any particular group, whereas the label B-edu_group
denotes a line that lies at the beginning of a group in the
Education section.
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Figure 3: Screenshot of the user interface of the custom annotation tool, showing the plain-text version of a fictional résumé
with its corresponding annotations.

A.2. Labels for Tokens
The sequence labeling task at the token-level is intended
to extract entities. Entities are annotated on arbitrary
spans of characters in the résumé text, in order to gener-
alize the annotations for any possible tokenization. We
allow for a total of 17 labels. Although most entities are
usually found in specific sections, we allow for annotat-
ing any entity in any part of the résumé.

A.2.1. Contact Information entities

The following entities are usually found in the contact
information section.

Name Candidate’s name.

Phone number Candidate’s phone number.

Email Candidate’s email address.

St. address Unit information (apartment, floor) and neigh-
borhood.

ZipCode An alphanumeric postal code.

City The city the candidate lives in.

State First-level geopolitical subdivisionwhere the candidate
is located.

A.2.2. Work Experience and Internship entities

These entities are usually found in the groups of either
the work experience or the internship sections.

Company Name of a candidate’s employing organization.

Job title Title that the employer gave to the candidate while
working for the company.

Period Period in which the candidate held the position.

A.2.3. Education entities

These entities are usually found in the groups of the
education section.

School name Name of an institution where the candidate
was formally educated.

Degree title he name of the academic program in which a
student participates or was awarded a degree.

Degree Period Period of time in which the candidate at-
tended the educational organization in fulfillment of
the degree.

Major The core academic discipline the candidate had to
focus on while pursuing their degree.

GPA Grade, or any other candidate score, presented as a
standardized measurement.

A.2.4. Language entities

The following entities are usually found in the Languages
section.

Language name The name of a language that the candidate
claims to be familiar with.



B. Detail on the Handcrafted
Features

The non-Transformer models presented in Section 5 em-
ploy a combination of FastText word embeddings and
handcrafted features. The complete list and details of
each handcrafted feature is provided in GitHub because
of space considerations9. The final set of features was
determined based on the empirical results of preliminary
experiments, which are not included in this study due to
space constraints. Note that certain features necessitate
dictionaries of relevant terms to be computed, thereby
requiring separate dictionaries for each language.

9https://github.com/federetyk/resume-parsing

https://github.com/federetyk/resume-parsing
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