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Abstract
Recommender Systems (RS) have proven successful in a wide variety of domains, and the human resources (HR) domain is no
exception. RS proved valuable for recommending candidates for a position, although the ethical implications have recently
been identified as high-risk by the European Commission. In this study, we apply RS to match candidates with job requests.
The RS pipeline includes two fairness gates at two different steps: pre-processing (using GAN-based synthetic candidate
generation) and post-processing (with greedily searched candidate re-ranking). While prior research studied fairness at
pre- and post-processing steps separately, our approach combines them both in the same pipeline applicable to the HR
domain. We show that the combination of gender-balanced synthetic training data with pair re-ranking increased fairness
with satisfactory levels of ranking utility. Our findings show that using only the gender-balanced synthetic data for bias
mitigation is fairer by a negligible margin when compared to using real data. However, when implemented together with the
pair re-ranker, candidate recommendation fairness improved considerably, while maintaining a satisfactory utility score. In
contrast, using only the pair re-ranker achieved a similar fairness level, but had a consistently lower utility.
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1. Introduction
Machine learning (ML) applications have proven to be
useful in many domains over recent years. However, de-
spite the many benefits of ML-enabled tools, biases can
occur and be amplified through the highly scalable nature
of ML-enabled systems. Algorithms used in applications
such as recidivism prediction, predictive policing, or fa-
cial recognition, have revealed bias towards either race,
gender or both [1, 2]. These biases can also be expressed
through proxy (unobservable) correlations expressed via
sensitive attributes such as gender and poorly defined
decision boundaries [3, 4].

We are focusing on fairness issues with candidate rec-
ommender systems (CRS). The goal of such a system is to
recommend the best candidates for a specific job, often
computing ranked lists of candidates in descending order
of relevance. A variety of fairness issues may arise from
the large and diverse pools of candidates and job offers.
In the case of the HR industry, bias in recommenda-

tions comes with a high risk of harm as candidates can

RecSys in HR’22: The 2nd Workshop on Recommender Systems for
Human Resources, in conjunction with the 16th ACM Conference on
Recommender Systems, September 18–23, 2022, Seattle, USA.
†
Work done while on internship at Randstad Groep Nederland.
Envelope-Open adammehdiarafan@gmail.com (A.M. Arafan);
david.graus@randstadgroep.nl (D. Graus); f.p.santos@uva.nl
(F. P. Santos); e.m.a.l.beauxisaussalet@vu.nl (E. Beauxis-Aussalet)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

perpetually face discrimination in finding employment.
The risk of harm is especially great considering the scal-
able nature of recommender systems. Here we focus on
a CRS to support a recruiter in finding the best matching
candidates for a client job request (e.g., a factory request-
ing 20 technicians).
As most ML algorithms perform predictions in a dis-

criminative fashion using historical data, it is not trivial
to guarantee that discrimination is not (unfairly) influ-
enced by proxies that might be correlated with protected
characteristics. The fairness in ML problem has been ap-
proached bymany researchers such as Rajabi and Garibay
who tackled the problem by synthesizing data, or Li et al.
constraining recommendations, and Geyik et al. by re-
ranking recommendations. These researchers produced
state-of-the-art (SOTA) algorithms tackling specific fair-
ness techniques, from which we distinguish two: pre-
processing (enforcing fairness at the data level) and
post-processing (enforcing fairness after predictions
were made).

These two approaches have traditionally been re-
searched separately in RS and fairness literature, ignoring
potential synergistic effects of applying fairness mecha-
nisms at different stages of the ML pipeline. To the best
of our knowledge, we found no prior work experiment-
ing with more than one processing technique in a single
pipeline. We aim to close this gap by testing SOTA bias
mitigation methods in both pre- and post-processing,
and observing the impact on the fairness of candidate
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ranking. We propose a pipeline for a CRS that integrates
two bias mitigation mechanisms (called Fairness Gates,
FG) at the pre- and post-processing steps. By FG, we refer
to the enforcement of bias mitigation techniques within
the pipeline. The FGs are a synthetic data generator
and a greedy re-ranker.
The synthetic data generator enforces gender bal-

ance in the sampling size while the greedy re-ranker
optimizes for both utility (the quality or usefulness of
candidate recommendations) and gender balance in candi-
date ranking. In this paper, we explore the fairness-utility
trade-offs among re-ranked CRS outputs trained using
synthetic data or only real data. Therefore, we focus on
exploring what are the impacts and trade-offs be-
tween utility and fairness that arise from combining
synthetic data generation at pre-processing and greedy
pair re-ranking at a post-processing level.
Our experimental results show that the best compro-

mise between fairness and utility is achieved when com-
bining the two FGs rather than using just one.

2. Background and Related Work
Before presenting the experiments conducted within our
novel candidate recommendation pipeline, essential ter-
minology needs to be defined alongside the state of the art
in the (sub)task(s) at hand. More specifically, we will first
introduce synthetic candidate synthesis which serves as
our first FG, before introducing fairness and specifying
the relevant techniques used in the CRS pipeline. Finally,
we will conclude with the research gap and a summary
of how the discussed techniques fit in our CRS.

2.1. Data Synthesis
Originally proposed by Rubin in 1993, the synthetic data
solution was initially tasked to overcome confidentiality
concerns during surveys [8]. Although confidentiality
issues have become more important with new stricter Eu-
ropean regulations such as the General Data Protection
Regulation (GDPR), the current applications of synthetic
data have also shown their strength in generating fair
and private synthetic data. In fact, synthetic data applica-
tions extend far beyond survey data synthesis, use cases
range from missing data imputation as well as data aug-
mentation solutions in semi-supervised learning, media
applications with image-to-image translation and finally
image super-resolution [9].
Data synthesis has evolved from Bayesian bootstrap-

ping methods and predictive posterior distributions to
deeper techniques such as Autoencoders (AE), Variational
Autoencoders (VAEs), autoregressive models, Boltzmann
machines, deep belief networks, and generative adver-
sarial networks (GANs) after the advent of deep learning

[10]. These deeper models, more specifically GANs, af-
forded the synthesis of more complex unstructured data
such as images and videos. In the context of this thesis
project, GANs will be used to generate tabular (struc-
tured) synthetic candidate data.

Despite their popularity, GANs are mainly used for un-
structured data synthesis tasks such as image and video
synthesis, the generation of synthetic tabular data such
as job candidates is not only uncommon from a domain
perspective but also from a technical perspective. This is
caused by the difficulty of learning discrete features with
potentially imbalanced classes. A challenge for which Xu
et al. found a solution by integrating a Gumbel Softmax
(GS) activation function in their 𝐶𝑇𝐺𝐴𝑁. The GS is based
on the Gumbel-Max trick, a common method for discrete
approximation [12].

With the ability to generate categorical features, other
issues can hinder the tabular candidate synthesis process.
Issues such as input datasets with mixed distributions (as
is the case for our input data) can severely affect genera-
tive performance. For these problems, Xu et al. propose
two solutions: mode-specific normalization for contin-
uous column normalization and conditional sampling
to enforce class balancing, both are known problems in
discriminatory generative modelling. Therefore, 𝐶𝑇𝐺𝐴𝑁
is an ideal generator for the task at hand as it can bal-
ance imbalanced datasets and handle mixtures of data
types. Before outlining the fairness-related work, we
relate 𝐶𝑇𝐺𝐴𝑁 to our CRS pipeline and discuss its contri-
bution to both the academic and domain gap.
Candidate synthesis is uncommon, although fairness

research showed successful use of tabular GANs to gener-
ate fair data and more domain-relevant research showed
the use of Gaussian copulas for synthetic candidate gen-
eration, considerations using 𝐶𝑇𝐺𝐴𝑁s to support down-
stream tasks are rare if not unavailable [5, 13]. In the syn-
thetic candidate generation domain, van Els et al. is the
unique example in our high risk of harm task. Therefore,
the use of GANs, more specifically 𝐶𝑇𝐺𝐴𝑁s to generate
candidates will greatly improve the fairness of our CRS
pipeline.
In fact, as outlined by Xu et al., conditional sampling

will allow us to synthesize balanced training data with
ease which can be used downstream as a fair balanced
basis to train candidate-scoring algorithms and mitigate
bias; the use of conditional sampling alongside reject
sampling (to be introduced in themethodology section) is
how we link candidate synthesis with fairness and
ultimately bias mitigation in our end-to-end CRS
pipeline. Therefore, the use of 𝐶𝑇𝐺𝐴𝑁s is novel in the
candidate recommendation domain. With the synthetic
pre-processing techniques outlined, we will provide
an outline of the fairness literature, by focusing more
specifically on post-processing methods.



2.2. Fairness
With the relevant background and related work on candi-
date synthesis introduced, we now proceed further down
our CRS pipeline towards the second FG which will miti-
gate bias at the post-processing level, therefore, after
the models are trained on synthetic data to score real
candidates. The scored candidates are then evaluated ac-
cording to a relevant fairness metric and re-ranked using
a relevant post-processing technique.
Currently, multiple fairness metrics exist, each with

their respective strengths and weaknesses. In our case,
we only consider demographic parity, which was defined
by Kusner et al. as:

• Demographic Parity: ”A predictor �̂� satisfies
demographic parity if P(�̂� |𝐴 = 0) = P(�̂� |𝐴 = 1).”
For 𝐴 representing a sensitive attribute with 𝑎
levels.

Many other fairness techniques exist, namely the re-
moval of any sensitive attributes. We stress that simply
removing sensitive attributes is not guaranteed to re-
move bias. This process of simply removing protected
attributes is known as fairness through unawareness and
was shown to perpetuate unfairness [14]. In fact, in our
CRS pipeline, we are using the opposite logic to achieve
fairness through awareness by explicitely using gender
to re-rank candidates in the post-processing step.

2.2.1. Fairness in Rankings

While demographic parity is useful for quantifying fair-
ness, the enforcement of such rules has yet to be defined.
Fairness can be enforced either through a data cleaning
process verifying for class imbalances and the existence
of sensitive (proxy) variables (pre-processing) or modi-
fying model output post-training with approaches such
as re-ranking (post-processing)[7]. Although we con-
sider the two approaches in this project, the evaluation of
our model will follow the SOTA post-processing tech-
niques which are presented below.
For our CRS pipeline we will use Geyik et al.’s ap-

proach considering it is already used in the HR domain
(the task at hand was the recommendation of candidates
in LinkedIn). Additionally, Geyik et al. achieved SOTA
performance with more than a 4-fold reduction in un-
fairness and a reduction in utility of only 6%. From a
research gap perspective, candidate re-ranking is widely
used in the industry and researched in Information Re-
trieval literature. However, despite not being novel in
this sub-task, our CRS pipeline fills the research gap by
performing the re-ranking of candidates on synthetically
trained scoring models.

This is where our end-to-end CRS pipeline contributes
to both the domain and the relevant literature, by testing

how the combination of candidate synthesis for scoring
model training combines with re-ranking methods for a
better bias mitigation end-to-end process. This combi-
nation is novel in both the HR domain and in the
literature for fairness and generative modelling.

2.3. Summary and Research Gap
The above mini-literature review outlined the different
key areas of (candidate) synthesis and fairness process-
ing techniques. As shown, the combination of multiple
processing techniques within one CRS pipeline has never
been attempted. Therefore, our pipeline is presented
as a combination of the presented related work and it
will be evaluated based on the output of the candidate
rankings. For the evaluation, we will not be comparing
our CRS pipeline’s 𝐶𝑇𝐺𝐴𝑁 to Xu et al. nor will we be
comparing our re-ranker to Geyik et al. as we are using
drastically different datasets. Instead we will be devel-
oping our own evaluation framework for the candidate
data at hand which we will outline in section 3.
The goal of this section was to provide a high-level

overview of the literature and techniques used all while
exposing the academic gap where our pipeline resides. In
the following section, we use the provided background
to introduce our experiments with in-depth technical
detail and apply the SOTA related work to the candidate
recommendation problem with our novel CRS pipeline.

3. Methodology
Our CRS follows a point-wise learning to rank approach,
where for a given job 𝑗, we fetch and rank candidates
𝑖, much like given a query, the goal is to rank docu-
ments in the traditional document retrieval scenario. In
other words, our recommender system predicts relevance
scores ̂𝑦𝑖,𝑗 given the candidate and job features 𝑋𝑖,𝑗.
We use real data from an international HR company.

For training purposes, the candidate features 𝑋𝑖 are asso-
ciated with a ground truth label 𝑦𝑖,𝑗 where 𝑦𝑖,𝑗 = 1 if the
candidate 𝑖 has been recruited or shortlisted for a job 𝑗,
and 0 otherwise.
The data used for training is of a structured nature,

spanning real-valued, categorical, and binary features.
Features correspond to candidate features (e.g., job seek-
ers’ preferences such as minimum salary, preferred work-
ing hours, ormaximum travel distance, in addition to data
related to their work experience or level of education).
Job features (e.g., industry of the company, company size,
geographical location), and finally candidate-job features
that represent their overlap (e.g., geographical distance
between candidate and job, or a binary feature indicating
whether candidate has worked in job’s industry before).
Much in the same vein that query, document, and query-



document features are designed in a traditional learning
to rank for information retrieval-scenario.

3.1. Gender balance and synthetic data
Imbalanced data is very common in CRSs, and we focus
on gender imbalance for our case, which is common in
the job market. To effectively study the issue of imbal-
ance, we construct various explicitly (im)balanced sce-
narios through a rejection sampling algorithm based on
John V. Neumannn’s technique [15]. We first sampled re-
balanced subsets of the original training data,considering
gender as the sensitive attribute 𝑎. We only considered 2
genders (female, male) as unfortunately our dataset does
not contain enough samples of non-binary genders.
To construct our (im)balanced subsets, we randomly

sampled job candidates from each job request 𝑗 with a
constrained proportion of candidates from each gender.
We generated two datasets with heavy imbalance
(one with 20% of female candidates, one with 20% of
males); two datasets with minor imbalance (one with
45% of female candidates, one with 45% of males);
and a balanced dataset (with 50% of male and female
candidates). For each training dataset, 10% of the data
points were kept as a held-out test set. To avoid data
leakage, all job requests 𝑗 were unique to the test set.
The test dataset sizes in number of unique < 𝑗, 𝑖 >-pairs
after rejection sampling are shown in Table 1.

Test Data Sample Size
heavy imbalance (20% males) 38 701
heavy imbalance (20% females) 40 975
minor imbalance (45% males) 48 195
minor imbalance (45% females) 41 972
balanced 48 178

Table 1
Test set sizes after rejection sampling.

We trained 5 synthetic data models, using each re-
balanced dataset as training data for the CTGAN algo-
rithm [11]. We were able to generate balanced synthetic
data using the models’ conditional sampling parameters.
We generated balanced synthetic data where each gender
represents 50% of the dataset, for both positive (𝑦𝑖,𝑗 = 1)
and negative (𝑦𝑖,𝑗 = 0) examples.
The synthetic data generation is our first fairness

gate (FG) in the CRS pipeline. This FG aims to improve
the fairness of candidate scoring ̂𝑦𝑖,𝑗 by training the CRS
on balanced data. The full overview of the experimental
pipeline is shown in Figure 1.

3.2. Candidate scoring and re-ranking
We trained CRS models to score candidates 𝑖 by estimat-
ing their relevance score ̂𝑦𝑖𝑗 for the jobs 𝑗. We trained a
total of 10 CRS models, using real or synthetic job candi-
dates as training data (5 datasets each respectively). The
jobs for which candidates are scored remain those of the
real data, more specifically, the real holdout test data.
We tested the CRS models with their respective hold-

out test sets, comprising real data with the same gender
balance. For each test set, we scored candidates using
either the CRS trained with synthetic data or with real
data (of the same gender balance), i.e., we use 2 CRS
models per each of the 5 test sets, and thus obtain a total
of 10 sets of scores. After scoring candidates we rank
candidates by descending order of relevance scores, and
obtain 10 sets of rankings.
After the candidates are scored and ranked, we in-

troduce our second Fairness Gate (FG) at the post-
processing level of the CRS pipeline. This FG aims to
improve the fairness of candidate ranking by using a
re-ranking algorithm that interleaves males and females
equally at the top ranks (e.g., Figure 2). For our experi-
mental CRS pipeline, we reused the re-ranking algorithm
from Geyik et al. [7], and obtained 10 sets of re-rankings
(Figure 1).

3.3. Metrics and Evaluation
The impact of the re-ranking is evaluated in terms of
utility using Normalised Discounted Cumulative Gain
(𝑁𝐷𝐶𝐺), a common ranking metric to maximise [16]. To
measure the impact of the re-ranking, we compared the
𝑁𝐷𝐶𝐺 scores before re-ranking (by considering the ini-
tial ranking as the ideal ranking) and after re-ranking.
A lower 𝑁𝐷𝐶𝐺 score means re-ranking had a negative
impact on the original rankings. A higher 𝑁𝐷𝐶𝐺 score
means re-ranking had less impact. As we are considering
the impact of the ranking, the 𝑁𝐷𝐶𝐺 score was calcu-
lated after ranking, hence the appearance of only one
score. Therefore, we used the 𝑁𝐷𝐶𝐺 as a single impact
metric. The original predicted ranks were used as ground
truth (ideal ranking) which was measured against the
re-ranked candidates. To ensure the ideal ranks are valid,
we have used common classification metrics such as F1
and AUC.
In terms of fairness, we used 𝑁𝐷𝐾𝐿 (normalized dis-

counted cumulative Kullback-Leibler divergence), a dis-
tance metric comparing distribution dissimilarity, such
as rank distributions [7].
Here, 𝑁𝐷𝐾𝐿 calculates the dissimilarity between the

distributions of males and females, especially at the top
ranks. We consider that demographic parity is achieved
when the rank distributions of males and females are
similar (i.e., 𝑁𝐷𝐾𝐿 = 0).



Figure 1: Experimental CRS pipeline including bias mitigation techniques at pre-processing and post-processing steps.

4. Results and Analysis
We present the results of the CRS that include one, two,
or none of our Fairness Gates (FG): re-balancing the train-
ing set with synthetic data (1st FG), and re-ranking the
job candidates (2nd FG). We consider 3 levels of data im-
balance, and summarise the NDCG and NDKL for each
level in Table 2.

The 𝑁𝐷𝐶𝐺 difference is noticeable between CRS mod-
els trained with real or synthetic datasets (i.e., between
pairs of rows in Table 2). For the heavy imbalance case,

the increase in utility is almost two-fold (+45%).
The 𝑁𝐷𝐾𝐿 difference is very small between CRS mod-

els trained with real or synthetic datasets, and shows
a negligible improvement of fairness. These results
show that using balanced synthetic data to train
CRSmnodels (1st FG) considerably improved utility
(𝑁𝐷𝐶𝐺) while maintaining the same level of fair-
ness (𝑁𝐷𝐾𝐿).
The 𝑁𝐷𝐾𝐿 decreases before and after ranking

(i.e., last two columns in Table 2), showing that the



Figure 2: Plot displaying the rankings of the top 10 candi-
dates before re-ranking and after re-ranking. The ranks of
the candidates are on the x-axis. Female candidates are blue
bars, and male candidates are orange bars. The ranking A
are from a CRS trained on heavily imbalanced data, and A1
represents the re-ranked candidates from A. Similarly, B and
B1 are the initial and re-ranked rankings for a CRS trained
on the balanced dataset.

Ranked Lists NDCG NDKL
Before
re-ranking

NDKL
After
re-ranking

Heavy imbalance:
CRS trained w.
real data

0.384 0.366 0.200

Heavy imbalance:
CRS trained w.
synthetic data

0.693
(+45%)

0.358 0.197

Minor imbalance:
CRS trained w.
real data

0.403 0.217 0.126

Minor imbalance:
CRS trained w.
synthetic data

0.647
(+38%)

0.213 0.126

No Imbalance :
CRS trained w.
real data

0.403 0.213 0.124

No Imbalance:
CRS trained w.
synthetic data

0.633
(+36%)

0.206 0.124

Table 2
Average 𝑁𝐷𝐶𝐺 and 𝑁𝐷𝐾𝐿 for ranked list obtained at each
level of data imbalance, using CRS trained with real or syn-
thetic data (1st FG), with or without re-ranking (2nd FG).

rank distributions of male and female candidates are
more similar after re-ranking. The decrease is of
similar magnitude for each level of data imbalance, i.e.,
whether the CRS model is trained with real or synthetic

data. These results show that using re-ranking at
post-processing (2nd FG) equally improved fairness
(𝑁𝐷𝐾𝐿) whether or not synthetic data was used to
train CRS models (1st FG).

We also explored the score distributions for male and
female candidates. Those attributed by CRS models
trained with real data are unevenly skewed toward the
left, even in cases where the real data is balanced (bal-
anced dataset). However, for CRS models trained with
synthetic data, the score distributions of both genders
shift more to the right, creating a more normally-
shaped score distribution across both studied gen-
ders.

Figure 3: Score distribution for male and female candidates.
The score assigned to the candidates is on the x-axis, female
candidates are in blue while male candidates are in orange. A
represents a CRS model trained with heavily imbalanced real
data, and A1 a CRS trained with synthetic data learned (from
a generator trained on heavily imbalanced data). B and B1
are the the balanced dataset.

5. Discussion
Despite the promising results shown in section 4, our
CRS pipeline has shown some pitfalls. More specifically,
the computation of 𝑁𝐷𝐶𝐺 using ranked candidates as
ground truth and only evaluating the re-ranked perfor-



mance can comewith additional validity issues. However,
it should be noted that these validity issues can be easily
averted by adding another 𝑁𝐷𝐶𝐺 calculation evaluating
also non-re-ranked candidates against a ground truth
constructed from another holdout set for example.

Additionally, supplementary validation methods could
have been considered. For instance, it could have been
beneficial to use future 𝑗, not included in the data, in
further evaluations. Statistical tests could have also been
conducted, while other user-based approaches, such as
an evaluation with recruiters, could have contributed to
reinforce the validity of this project. These extra valida-
tion steps should be implemented before deploying the
fairness mechanisms proposed
Furthermore, some findings were unexplainable with

the current analysis. For instance, the 𝑁𝐷𝐾𝐿 scores for
CRSs trained on realminor imbalanced datasets are lower
than those trained on real balanced datasets, which also
applies after re-ranking. Although the scores vary by
a small margin, such behaviour is difficult to explain
considering the complexity of our pipeline, rendering
de-bugging tasks equally complex.

Additional unexplainable results are also visible on the
synthetic to real comparison with CRSs trained on syn-
thetic datasets such as heavy imbalance showing more
unfairness by a small margin when compared to real-
trained counterparts. These unexplainable findings be-
tween real and synthetic subsets are even more puzzling
considering, figure 3 shows more balanced scoring for
all synthetically-trained CRSs which should result in a
lower 𝑁𝐷𝐾𝐿 score before re-ranking.
Finally, the implementation of demographic parity to

enforce equal proportions between genders oversimpli-
fies the complexity of the candidate hiring landscape.
This oversimplification can be resolved in future research
with a lesser degree of generalizability. Future research
can be more specific by adjusting fairness rules to the
domain of the job request 𝑗. For instance, certain jobs
such as security personnel can show real-world skewness
towards a certain gender. A future CRS pipeline needs
to adjust its fairness rules at 𝑗 level.
Despite these limitations and suggestions for future

work, overall, our research successfully showed that the
combination of synthetic data and re-ranking was a com-
bination contributing to both fairness and utility even
when compared to CRSs trained on real balanced data
such as the balanced dataset. Therefore, as expected, a
combination of pre-processing and post-processing FGs
proved to be useful.

6. Conclusion
The goal of our CRS pipeline was never to produce SOTA
synthetic candidates and recommendations, despite our

satisfactory results. The goal was to build a recommen-
dation pipeline using both real and synthetic data to be
able to experiment with fair processing techniques and
as a result, mitigate bias in candidate recommendations.
From this perspective, the double fair-gated CRS pipeline
was successfully built and the generation of synthetic
candidates was successful, valid and accurate throughout
the pipeline.
The generated data has shown to be accurate on all

(im)balance levels, validating the expectations on mode-
specific normalization and conditional sampling in CT-
GANs, while also demonstrating the benefits of rejection
sampling methods in re-balancing imbalanced data and
using the synthetic candidates generated from it to score
real (im)balanced test subsets fairly. From a fairness per-
spective, it was also shown how scorers trained on syn-
thetic candidates outperform scorers trained on balanced
real data from a utilitarian perspective.
Although the issues outlined in section 5 concerning

the lack of measurement of pre-re-ranked utility raise
some minor validity concerns, the evidence shows how
synthetically-trained CRSs provide fair, useful can-
didate recommendations when integrated in such a
pipeline.

7. Future Work
In future work, the recommendations shared in the dis-
cussion can be considered. More specifically, the use of
additional evaluation methods with human-in-the-loop
evaluation using recruiters or the use of future requests
to test the CRS pipeline.
Additionally, future researchers should also consider

the use of less data-greedy rejection sampling techniques
as we have lost more than 80% the amount of the hold-
out information we had at the start of the pipeline. This
can either be resolved with more elegant rejection sam-
pling constraints, the use of larger datasets or data-
augmentation techniques through synthetic data for in-
stance. The latter could have been considered in this
project if it was within the scope of our research.
Finally, with a solved data scarcity problem future

researchers can consider the discussed domain-adjustable
fairness rules for more specific fairness constraints to
overcome real-world skewness.
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